
Testing Cache Side-channel Leakage
Tiyash Basu

Saarland University
tiyashbasu@gmail.com

Sudipta Chattopadhyay
Singapore University of Technology and Design (SUTD)

sudipta chattopadhyay@sutd.edu.sg

Abstract—Cache timing attacks retrieve secret information
(e.g. a secret key) about a program by analyzing the cache
behaviour in program executions. It is, therefore, crucial to
understand whether a program is vulnerable to cache timing at-
tacks. But how can we test a program to discover its vulnerability
against cache timing attacks? In this paper, we propose, design
and evaluate a test generation methodology that systematically
discovers the cache side-channel leakage of arbitrary software
binaries. At the core of our test generation is a method that
systematically explores the program input space and it adapts
based on the observed cache performance in the executed tests.
We have implemented our test generator and evaluated it with
several open-source subject programs, including programs from
OpenSSL and Linux GDK libraries. Our evaluation effectively
reveals cache side-channel leakage in such real-world programs.
We also empirically show that our test generator is more effective
in revealing cache side-channel leakage than traditional fuzz
testing tools Radamsa and AFL.

I. INTRODUCTION

Side-channel attacks aim to retrieve secret features of a
program execution (e.g. a secret key) without knowing its
functional input or output. Among others, cache timing at-
tacks [12] have emerged to be a serious security breach in
real-world software systems. The key intuition behind a cache
timing attack is to observe the timing of cache hits and misses
in a program execution, and subsequently use this timing
to determine the secret features of the respective program.
The disclosure of such secret information to an untrusted
party may have disastrous consequences, often resulting in
a complete breakdown of the overall system. Therefore, it is
crucial to validate software systems against potential cache
timing attacks.

For a given program, its vulnerability to cache timing
attacks depends on the amount of information that can leak
through its cache performance. The cache performance of a
program, in turn, is critically influenced by the underlying
execution platform. Unfortunately, the state-of-the-art in soft-
ware testing is far from being matured to validate software
properties, such as cache performance, that critically depends
on the execution platform. In this paper, we take a step forward
to bridge this gap in software testing. Given a program and a
cache configuration, we formulate the test generation problem
to validate software systems against cache timing attacks.
Based on this formulation, we show an appropriate coverage
metric for the test generation problem and design a directed
testing strategy to expose the cache side-channel leakage of
an arbitrary program.

Number of cache misses

N
um

be
r o

f k
ey

s

13800

0

2 keys

13850 keys

213 279

Not uniform distribution

Fig. 1. For a fixed input message, the plot shows the distribution of the number
of keys with respect to a given number of cache misses. The experiment was
performed for an implementation of AES-128 [1] for 256,000 different keys
(picture taken from [15])

In order to understand the challenges involved in test-
ing cache side-channel leakage, consider the illustration in
Figure I. Figure I demonstrates the execution of an imple-
mentation of Advanced Encryption Standard (AES) [1] for
a fixed plaintext message and 256000 different keys. The
horizontal axis shows the number of cache misses exhibited
(i.e. in a range between 213 and 279) and the vertical axis
captures the number of keys that induce them. Figure I clearly
shows that the distribution of cache misses is essentially a
gaussian. There exists only two keys which induce extreme
cache performance (i.e. maximum or minimum), whereas there
exists 13,850 keys which induce the modal cache performance.
From the perspective of software testing, Figure I reveals the
following challenges: First, all 256,000 executions in Figure I
exercise the same program path. Therefore, merely exploring
program paths is not sufficient to explore different cache
behaviour of the respective program. Since it is critical to
explore the different cache behaviour to expose cache side-
channel leakage, optimizing a test generation towards path
coverage may not reveal cache side-channel leakage. Secondly,
only a few keys may exhibit certain cache behaviour, such as
the extreme cache behaviour shown in Figure I. In general,
the cache behaviour of a program may vary significantly,
with some cache behaviour being more frequent than others.
This requires systematically searching the input space of the
program. Such a search process should ensure that the testing
process not only exhibits the frequent cache behaviour (hence,
common timing behaviour), but also the infrequent cache
behaviour (hence, exceptional timing behaviour).

In this paper, we design and evaluate a test generation
scheme, based on simulated annealing, to address the chal-

lenges mentioned in the preceding paragraphs. The output of
our framework is a test suite, where each test in it witnesses a
unique cache timing of the program. We show that the number
of tests in our test suite is directly correlated with the amount
of information that may leak through cache timing attacks. Our
work significantly differs from the work in static analysis of
cache side channels [17], [22]. In particular, our test generation
process does not exhibit any false positives, meaning that each
test in the test suite serves as a witness of a cache behaviour
in real executions. Besides, our work has a significant flavour
of testing and debugging. This means the tests generated by
our framework can further be used to investigate a program
and potentially reduce its cache side-channel leakage.

Not only that searching input space is non-trivial to test
cache side-channel leakage, it is also the test execution that
makes the testing problem challenging. For each generated
tests, we need to measure the cache performance. Unfor-
tunately, such a measurement is extremely noisy in real
hardware due to the presence of multiprocessing hardware
and supervisory software (e.g. operating systems). For an
effective test generation, it is crucial to minimize such noise,
as a potential attacker may employ several noise reduction
techniques herself to mount an attack. In order to reduce
the noise in test execution, we use the following techniques:
Firstly, we use a controlled environment where the execution
statistics (e.g. the number of cache misses) is deterministic.
Secondly, in real hardware, we leverage performance counters,
statistical methods and explicitly introduce instructions to
isolate execution in a single core. This, in turn, reduces the
noise when measurements are taken from real hardware.

The remainder of the paper is organized as follows. We give
an overview of the problem in Section III and we make the
following contributions in this paper:

1) We formulate the test generation problem and an appro-
priate test coverage criteria for validating cache side-
channel leakage of an arbitrary program (Section II).

2) We design a test generation algorithm that aims to
search the program input space to explore different
cache behaviour and subsequently, reveal the cache side-
channel leakage of a program (Section IV).

3) We implemented our test generation algorithm in an
open platform. Our implementation and all the exper-
imental data is publicly available to facilitate research.

4) We evaluated our test generator with real-world pro-
grams from OpenSSL library [6] and Linux GDK
library [2] in a controlled environment (using sim-
plescalar [10] simulator) as well as in real hardware.
We also compared our test generator with state-of-the-
art fuzz testing tools Radamsa [21] and AFL [28]. Our
evaluation effectively reveals cache side-channel leaks
in all the chosen subject programs and our directed
approach in test generation outperforms (in terms of
revealing cache side-channel leakage) both Radamsa and
AFL (Section V).

We conclude this paper with threats to validity (Section VII)
and consequences (Section VIII).

II. TEST GENERATION PROBLEM

Cache side-channel attacks exploit the performance gap be-
tween caches and main memory (DRAM) to discover sensitive
information. Such sensitive information includes secret keys
of encryption routines, keystrokes in password checkers or
any other private information such as the contact list of users.
Cache side-channel attacks are often non-invasive and they can
even be mounted easily over the network [12]. In this paper,
we choose timing-related attacks. In such side-channel attacks,
the attacker monitors the number of cache misses incurred in
an execution and employs statistical techniques to discover
secret information [12].

We assume the cache side channel to be a function C :
I → O. The function C maps a finite set of sensitive inputs
to a finite set of observations. Since the attacker monitors the
number of cache misses, in this scenario, an observation o ∈ O
captures the number of cache misses in an execution. If we
model the choice of a secret input via a random variable X and
the respective observation by a random variable Y , the leakage
through channel C is the reduction in uncertainty about X
when Y is observed. In particular, the following result holds
for quantifying the cache side-channel leakage [22].

ML(C) ≤ log2 |C(I)| (1)

where ML(C) captures the maximal leakage of channel C. In
Equation 1, equality holds when X is uniformly distributed.

Implication to test generation: Since we aim for a software
validation framework, we assume the presence of a strong
attacker whose choice of secret input is uniformly distributed.
Therefore, ML(C) is maximized and ML(C) = log2 |C(I)|
holds (cf. Equation 1). As a result, the number of unique
observations by the attacker (i.e. |C(I)|) resembles the side-
channel leakage of the respective program.

The quantification |C(I)| provides preliminary insights on
testing an arbitrary software and discover its potential side-
channel leakage. On the one hand, |C(I)| provides an appro-
priate coverage metric for a test-generation scheme targeted
to discover side-channel leakage. On the other hand, |C(I)|
can be used to compute the number of bits leaked through
side channels (cf. Equation 1). Therefore, we develop a test
generation algorithm that aims to maximize the value of
|C(I)|. This means we generate test inputs in order to explore
as many unique observations as an attacker can make. For
each unique observation explored by our framework, a witness
is provided. These witnesses can further be investigated to
discover the information leak for respective executions. Be-
sides, the number of unique observations explored by our test
generation is directly correlated with the side-channel leakage
quantified in Equation 1.

III. OVERVIEW

In this section, we motivate the challenges in test generation
through examples. Since memory performance is accurately

/* k is sensitive input */
char p[128];
char k;
char q[128];
assert(k>=0);
load reg1, q[127]
if (k <= 63)
load reg2, p[k%2]

else
load reg2, p[64*(k%2)]

add reg1, reg2
store reg1, q[127]

k mod 2 == 0 (#miss = 3)
k mod 2 == 1 (#miss = 2)

/* k is sensitive input */
char p[128];
char k;
char q[128];
assert(k>=0);
if (k <= 63)
load reg2, q[127-k]

else
load reg2, q[k-64]

load reg1, p[k]
add reg1, reg2
store reg1, p[k]

0<=k<=127 (#miss = 2)

/* k is sensitive input */
char p[128];
char k;
char q[128];
assert(k>=0);
load r1, p[k]
load r2, q[127-k]
add r1, r2
store r1, p[k]

k = 0 (#miss = 3)
1 <= k <= 127 (#miss = 2)

p[0], q[127]
p[1]

k
q[0]
q[1]

q[126]
Cache

128 bytes

128 bytes

p[127]

(a) (b) (c) (d)

Fig. 2. k is a sensitive input taking only positive values. (a)-(c) three code fragments and respective partitions of the input space with respect to the number
of cache misses (reg1, reg2 represent registers), (d) mapping of program variables into a direct-mapped cache sized 256 bytes (q[127] and p[0] conflict in
the cache)

captured in the binary code, we directly test the binary code.
However, for the sake of illustration, we use both assembly-
level and source-level syntaxes in Figure 2. Figures 2(a)-(c)
show three different code fragments. These code fragments
execute on a platform employing a direct-mapped, 256 bytes
cache. The mapping of variables p[0 . . . 127], q[0 . . . 127] and
k into the cache is shown in Figure 2(d).

Consider the execution of the code in Figure 2(a), starting
with an empty cache. We assume that k has been assigned
to a register and for the sake of simplicity in the example,
we ignore the cache performance of “assert” function call.
Since k is assigned to a register, accessing k does not involve
accessing the cache. When k is even, we get the following
sequence of memory accesses: q[127] → p[0] → q[127]. The
first two accesses to q[127] and p[0] would incur cache misses
due to the initial empty state of the cache. Moreover, since
p[0] and q[127] are mapped to the same location in the cache,
the access to p[0] will replace q[127] from the cache, resulting
in the second access of q[127] to be a cache miss. A similar
exercise would reveal that for odd values of k, the code in
Figure 2(a) suffers two cache misses. To summarize, the code
in Figure 2(a) exhibits two different cache behaviours, but
these behaviours are not directly correlated with the program
path. More specifically, each program path in Figure 2(a)
exhibits all possible cache behaviour of the overall program.

The example in Figure 2(b) captures a program with exactly
one cache behaviour, even in the presence of multiple program
paths. In particular, the cache behaviour of the program in
Figure 2(b) is independent of the program input. This happens
primarily due to the fact that the store instruction of p[k]
will always find p[k] in the cache, irrespective of the value of
k. Moreover, the access to q[127−k] or q[k−64] will always
be a cache miss due to the initial empty state of the cache.
Similarly, the first access to p[k] (i.e. load reg1, p[k])
will incur a cache miss. In summary, for all possible values of
k, the code fragment of Figure 2(b) incurs two cache misses.

Finally, using the code fragment of Figure 2(c), we show
that a single program path may lead to multiple different cache

behaviours. In particular, consider the execution of the code in
Figure 2(c) with k = 0. This leads to the following sequence of
memory accesses: p[0]→ q[127]→ p[0]. Since q[127] replaces
p[0] from the cache, the respective execution would incur three
cache misses. It is worthwhile to note that for any k ∈ [1, 127],
access to q[127−k] does not replace p[k]. As a result, for any
k ∈ [1, 127], the execution of the code in Figure 2(c) suffers
two cache misses. This example demonstrates the variation of
cache behaviour within a single program path and therefore,
the importance of exploring the input partitions with respect
to cache performance.

The preceding examples demonstrate the non-trivial inter-
action between cache performance and programming patterns.
In particular, a single program path may exhibit variation with
respect to cache performance. Similarly, test inputs, that lead
to the execution of different program paths, may exhibit the
same cache performance. Therefore, it is important to design
smart input generation techniques, which specifically focus
on exploring different cache behaviours of a program. In this
work, we accomplish this via a search-based test generation
scheme.

IV. METHODOLOGIES

A. Architecture and attack model

In this paper, we only focus on L1 caches, meaning that the
attacker can distinguish memory accesses that are L1 cache
misses with the memory accesses that are L1 cache hits.
Broadly, side-channel attacks are classified into synchronous
and asynchronous attacks [26]. In synchronous attack, an
attacker triggers the processing of known inputs (e.g. a plain-
text or a cipher-text for encryption routines), whereas this
phenomenon is not possible for asynchronous attacks. Syn-
chronous attacks can be mounted easily, since the attacker
does not need to compute the start and end of the victim
routine. For instance, in synchronous attack, the attacker can
trigger encryption of known input messages and observe the
encryption-timing [12]. Since we aim for a test generation tool

with the aim of producing side-channel resistant implementa-
tions, we assume the presence of a strong attacker in this paper.
Therefore, we assume the attacker can request and observe the
execution (e.g. number of cache miss) of the targeted routine.
We also assume that the attacker is capable to execute arbitrary
user-level code in the same processor running the targeted
routine. As a result, the attacker can flush the cache before
the targeted routine starts execution and therefore, reduce the
external noise in her observations. The attacker, however, is
incapable to access the address space of the target routine.

B. Overview of the algorithm

Algorithm 1 provides an outline of our test generation
framework. The central idea of our test generation revolves
around a simulated annealing algorithm. Given a program P ,
let us assume {b1, b2, . . . , bn} capture different bytes for an
arbitrary input of the program. We first set an initial solution
solinit to initiate our test generation process. Such an initial
solution comprises of Ni random values for each input byte
bi. In our case, Ni can be set as a configuration parameter
in the test generation. Such a representation of the search
space enables us to generate different set of tests from the
same solution, but with different objective values. This is
because, the objective value, for a set of tests, is defined as
the number of unique cache misses exhibited by these tests.
With this representation of the solution space, the annealing
process explores solutions with the higher probability of
increasing the unique observed cache misses and hence, the
objective value. If each solution were to represent only one test
case, then each solution would always produce an objective
value of one. Indeed, our evaluation observed a significant
improvement by capturing multiple possible tests within one
solution representation.

Given the initial solution, we iteratively generate test cases
to maximize the unique number of observed cache misses.
For any solution sol′ generated by Algorithm 1, we ran-
domly select a set of test inputs from sol′. The number
of tests, to be selected from sol′, is set prior to the test
generation process. We run each selected test and record
the set of observed cache misses. The cardinality of this set
forms the objective value of solution sol′. In Algorithm 1,
the objective function is computed and the test-suite T ′ is
augmented via the procedure computeTest. In order to
explore the input space, we mutate each solution via the
procedure selectNeighbour. The probability of selecting
a mutated solution depends on the computed objective value
of the respective solution and the temperature set for the
annealing process. Finally, when searching the input space is
completed, the procedure postProcess is used to remove
test cases having duplicate observations of cache misses in
T ′ and save the resultant test suite in T . Upon termination
of Algorithm 1, the test suite T is presented to the designer.
Each test in T witnesses a unique cache performance of the
program under test.

In the following, we describe some crucial components of
out test generation process.

Algorithm 1 Directed Test Generation for Covering Observa-
tions by an Attacker

1: Input:
2: P : Program under test
3: I : Input space of the program under test
4: C : A cache configuration
5: Output:
6: T : A test suite where each t ∈ T exhibits a unique cache
7: performance (i.e. the number of cache miss)
8:
9: /* initialize relevant parameters */

10: /* (see Section IV-C) */
11: set intermediate test suite T ′ := φ
12: set initial temperature tinit > 0
13: set final temperature tfinal ∈ (0, tinit)
14: set temperature decay rate α ∈ [0, 1)
15: set number of trials trials per temperature round
16: /* set initial solution */
17: /* see Section IV-D */
18: let solinit := setInitialSolution(I)
19:
20: /* iterative test generation */
21: let t := tinit
22: let solcur := solinit
23: /* compute tests and objective from initial solution */
24: /* (see Section IV-E) */
25: let 〈obj, T ′〉 := computeTest(solinit, P , T ′)
26: while (t > tfinal) do
27: Let count := 0
28: while (count < trials) do
29: /* mutate solution */
30: /* (see Section IV-F) */
31: let sol′ := selectNeighbour(solcur)
32: /* compute tests and objective from sol′ */
33: let 〈obj′, T ′〉 := computeTest(sol′, P , T ′)
34: if (obj′ > obj) then
35: solcur := sol′

36: obj := obj′

37: else
38: select a random value r ∈ [0, 1]

39: if r < e
obj′−obj

t then
40: solcur := sol′

41: obj := obj′

42: end if
43: end if
44: count := count+ 1
45: end while
46: t := t · α
47: end while
48: /* remove duplicate observations from T ′ */
49: /* keep unique observations in T */
50: let T := postProcess(T ′)
51: Report T to the designer

C. Initialization of the configuration parameters

The performance of a simulated annealing algorithm cru-
cially depends on the configuration parameters such as tinit,
tfinal, α and trials (cf. lines 12-15 in Algorithm 1). In our
experiments, we first generated a few random executions to
systematically set values of these parameters. We set tinit
to a value where we observed a considerable amount of
suboptimal solutions are accepted by our test generator. Such
a value of tinit is desirable to avoid that the optimization
process does not get stuck in a local maxima. In a similar
fashion, we set tfinal to a value where suboptimal solutions
are rarely accepted, hence mimicking the exploitation phase
in the simulated annealing process. In general, there is a lack
of scientific approach to choose the value of α. The value
of α should be set in a fashion that the temperature decays
slowly and our test generation can explore a significant (but not
exhaustive) portion of the input space to converge towards an
optimal solution. In our experiments, we set α = 0.9. Finally,
we compute the value of trials (i.e. the number of iterations
for a given temperature) in such a fashion that a reasonable
number of suboptimal solutions are accepted without slowing
down the test generation process dramatically. In the future, we
plan to develop a generic approach for systematically obtaining
the values of tinit, tfinal, α and trials .

D. Procedure setInitialSolution

In this procedure, we obtain an initial random solution
from the input space (cf. line 18 in Algorithm 1). This is
accomplished by generating Ni random values for each input
byte bi. These values set up the initial solution solinit in our
test generation process.

For instance, let us consider a scenario where the program
under test is an implementation of AES-128. In AES-128, the
length of the secret key is 128 bits or 16 bytes. When testing
AES-128 for different secret keys, we first generate a set of
random values for each of the sixteen key bytes. Figure 3, for
example, captures a scenario where five random values are
generated initially for each of the sixteen bytes of AES key.

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16

120 106 81 147 70 222 198 29 134 54 50 132 27 69 150 173

96 215 217 64 201 101 174 139 59 4 61 50 47 101 50 232

154 18 93 228 125 78 21 177 82 236 165 199 89 195 219 163

211 101 180 146 24 86 2 167 195 169 142 237 49 155 49 30

45 235 135 124 144 3 1 102 156 98 160 215 144 95 192 138

Fig. 3. An example of a random initial solution generated by the procedure
setInitialSolution

E. Procedure computeTest

In this procedure, we randomly generate M tests from a
solution, append these tests to a test suite T ′ and execute these
tests to compute the objective value (cf. line 25 in Algorithm 1)
for the respective solution. The number of tests, as selected
from a solution (i.e. M), is pre-configured by the designer.

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16

120 106 81 147 70 222 198 29 134 54 50 132 27 69 150 173

96 215 217 64 201 101 174 139 59 4 61 50 47 101 50 232

154 18 93 228 125 78 21 177 82 236 165 199 89 195 219 163

211 101 180 146 24 86 2 167 195 169 142 237 49 155 49 30

45 235 135 124 144 3 1 102 156 98 160 215 144 95 192 138

(a) (a)

(b)
Fig. 4. (a) Selection of a random input from the solution (the selected values
are marked in circles). (b) The test suite T ′, augmented with the newly
executed seven test cases. The number of cache misses observed, for each
test case, is captured via the last column.

To generate a test from a solution, we select one value at
random for each input byte bi. Since an input byte bi may
hold up to Ni values (cf. Figure 3) in a solution, this selection
is performed from a pool of Ni values for byte bi.

For the sake of illustration, let us assume that the designer
has set M to be seven. To generate the first test from the
solution given in Figure 3, we select one random value from
each of the sixteen sets of five values (cf. Figure 4(a)). We
repeat the same procedure to generate the remaining six test
cases. We augment our test suite T with these seven test cases.
We also execute these test cases and record the number of
cache misses suffered for each of the test case. In Figure 4(b),
each row indicates a test case in our test suite, whereas the
last column captures the number of cache misses observed by
executing the respective test. In order to compute the objective
value for the selected seven test cases (as indicated by the last
seven rows in Figure 4(b)), we compute the number of unique
cache misses observed by these tests. As shown in Figure 4(b),
this can be captured by the set {43, 45, 46, 48}. Therefore, we
set the objective value to be four for the selected test cases.

F. Procedure selectNeighbour

In order to obtain a neighbouring solution sol′ from an
arbitrary solution solcur, we mutate the current solution by
flipping the bits of all the values it contains (cf. line 31 in
Algorithm 1). Recall that each input byte bi may contain up
to Ni values. Therefore, we flip the bits of each of these Ni

values to obtain a neighbouring solution. Additionally, for each
of these Ni values, we gradually reduce the number of bits
that are likely to be flipped from eight (when the temperature
is tinit) to one (when the temperature is tfinal). This, in effect,

178

48

9

62

43

(a)

120

96

154

211

45

202

80

147

237

6

⊕ =

(a)
b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16

202 139 5 168 86 184 129 16 235 131 26 169 248 80 250 125

80 222 84 21 14 70 120 180 46 207 95 228 98 126 151 153

147 62 40 12 14 116 213 67 161 26 147 154 75 75 186 94

237 55 182 21 81 90 235 227 141 16 46 152 216 35 48 50

6 17 16 179 114 167 120 60 147 28 25 43 17 7 78 47

(b) (b)
Fig. 5. (a) A depiction of the bitwise XOR operation flipping the bits for b1
from the solution stated in Figure 3, (b) The neighbouring solution obtained
by flipping the bits of all values in the solution stated in Figure 3.

gradually reduces the accessible neighbourhood space as the
temperature decreases.

We revisit the example in Figure 3. Let us consider the
input byte b1. The five values for input byte b1 undergo
a bitwise exclusive-or (XOR) operation with systematically
generated flipping masks, resulting in a new set of 5 values.
This operation is demonstrated in Figure 5(a). We repeat such
bit-flipping procedure for all other input bytes to obtain a
neighbouring solution sol′. The final solution, after flipping
all the input bytes, is captured via Figure 5(b).

V. EVALUATION

A. Experimental setup

In our evaluation, we have chosen real-world subject pro-
grams, including programs from OpenSSL [6] library and
Linux GDK [2] library. These programs consist of implemen-
tations of cryptographic algorithms and key mapping routines.
Table I outlines some of the salient features of these programs.
The choice of our subject programs is driven by the fact these
programs are widely used in security-critical applications, this
making it essential to validate their security-related properties.
We have also selected a basic implementation of AES [1] to
stress test our framework against potentially insecure imple-
mentations.

We have implemented our test generator as an off-the-shelf
tool written in C++. We performed all our experiments on
a 64-bit Intel R© CoreTM i5-3337U CPU having 4GB memory
and running Debian operating system. In order to reproduce
results and facilitate research in this direction, we have made
our tool and all data publicly available in the following URL:

https://github.com/tiyashbasu/Cache Side Channel Tester

B. Research questions

Through our evaluation, we aim to investigate the following
research questions:

1) RQ1: How effective is our test generator in revealing
cache side-channel leaks in a controlled environment
(such as in a processor simulator)?

Program name Input size Lines of Size of binary
(bytes) C code (KB)

Basic AES [1] 16 773 29.9
OpenSSL AES [6] 16 1382 64.5
OpenSSL DES [6] 8 551 33.5
OpenSSL RC4 [6] 10 158 13.0

GDK-key from name [3] 4 1351 45.2
GDK-key to unicode [4] 4 1686 14.9

TABLE I
SALIENT FEATURES OF THE SUBJECT PROGRAMS

2) RQ2: How effective is our test generator in revealing
cache side-channel leaks in real hardware?

3) RQ3: How efficient it is compared to state-of-the-art
fuzz testing tools?

C. RQ1: Effectiveness in a controlled environment

We setup a controlled environment using simplescalar [10],
which simulates PISA architecture (an MIPS-like architec-
ture). To evaluate our test generator, we compile each subject
program into PISA compliant binary. Using the inputs gener-
ated by our test generator, we execute these PISA compliant
binaries within simplescalar simulator (using an in-order pro-
cessor and 2KB L1 cache) and record the number of cache
misses.

We compare our test generator with two state-of-the-art
fuzz testing tools Radamsa [21] and AFL [28]. Radamsa is a
black-box fuzzer and it does not need target software for test
generation. Therefore, we simply let it generate random test
inputs by mutating a sample input for a subject program. AFL
is a greybox fuzzing tool that generates inputs for a program
while executing an instrumented version of the program binary.
In order to compare different test generation schemes, we
compare the number of unique cache misses observed with
respect to the number of tests generated by each scheme.

Figure 6 demonstrates our observation. The primary purpose
of our test generation is to highlight cache side-channel
leakage in arbitrary software binaries. For instance, Figure 6
clearly highlights the higher cache side-channel leakage in
basic AES and OpenSSL DES, as compared to the OpenSSL
version of AES. This is due to the higher number of unique
observations reported in basic AES and OpenSSL DES, as
compared to the OpenSSL implementation of AES. We also
observe that, in several scenarios, our approach outperforms
the fuzz testing tools by a significant margin. This is expected,
as our approach is customized and directed, in order to expose
cache side-channel leakage of a program. This also indicates
the requirement of better test generation methodologies that
focus on software non-functional properties, such as cache
side-channel leakage.

D. RQ2: Effectiveness in a real hardware

Measuring cache performance in a real hardware is chal-
lenging as compared to the same in a controlled environment.
This is because, observing cache performance in a real hard-
ware is extremely noisy. Such a noisy behaviour appears due
to the following reasons:

1) Binaries compiled for real hardware have additional
code introduced by the linker, during the final stages

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Comparative analyses of different test generators in a controlled environment: (a) Basic AES (b) OpenSSL AES (c) OpenSSL DES (d) OpenSSL
RC4 (e) GDK - key from name (f) GDK - key to unicode

of compilation. These extra code cause cache misses by
themselves, thus causing interference in our readings.

2) Current-generation CPUs are multiprocessing, i.e., every
CPU core executes multiple kernel threads and user
threads in an interleaved fashion. Besides, the existence
of both software and hardware interrupts may disrupt
the measurement of cache performance.

It is worthwhile to mention that an attacker, who observes
cache misses to break an implementation, might employ
several algorithms to reduce the noise in her measurements.
Therefore, from a software validation perspective, it is critical
to understand that the attacker is capable in extracting the num-

ber of cache misses suffered by the victim routine. As a result,
a software testing tool, in order to expose cache side-channel
leakage, should also take appropriate measures in reducing the
noise introduced in the observed cache performance.

In order to reduce the noise in measuring cache perfor-
mance, we perform the following steps. First, we instrument
the source code of each subject program to monitor cache
misses only for the routines that might be subjected to a
cache attack (e.g. an encryption routine). This is accomplished
by using Linux utilities perf_event_open [7] to set up
the cache performance monitoring and ioctl [5] to enable
and disable the cache performance monitoring. An example

(a) (b)

(c) (d)

(e) (f)

Fig. 7. Comparative analyses of different test generators in real hardware: (a) Basic AES (b) OpenSSL AES (c) OpenSSL DES (d) OpenSSL RC4 (e) GDK
- key from name (f) GDK - key to unicode

of such an instrumentation is depicted in Figure 8. Secondly,
we configure the underlying execution platform to isolate a
CPU core for running our tests. Of course, such an isolation
is only partial. This is because, in spite of a CPU core being
isolated, most of the critical kernel threads will still run on
it. Therefore, some interrupts will still be directed to the
isolated CPU core, resulting interference in the measurement.
However, in our evaluation, we observed the noise for such
interference is minimal. Finally, we implement a wrapper
which runs a subject program with each test input 3000 times
and subsequently, reports the median of all observed cache
misses as the final observation. For instance, let us assume

that we generate 5 tests and the recorded median values are
100, 200, 300, 200, and 200, respectively. In order to compare
the effectiveness of different test generators, we compare the
number of unique medians recorded for the generated tests. In
this example, therefore, we quantify the effectiveness of the
respective test generator as |{100, 200, 300}| = 3. Note that
counting all possible cache misses is not an appropriate metric
for quantifying cache side-channel leakage. This is because,
the variation of cache misses, for a single program input, only
makes a side-channel attack difficult to mount.

Figure 7 demonstrates results obtained in real hardware.
The effectiveness of the simulated annealing approach remains

/*setting up performance monitoring*/

struct perf_event_attr pe;

pe.type = PERF_TYPE_HW_CACHE;

pe.config = PERF_COUNT_HW_CACHE_L1D

| (PERF_COUNT_HW_CACHE_OP_READ << 8)

| (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16);

//a few more settings done here

int fd = perf_event_open(&pe, 0, -1, -1, 0);

/*enabling performance measurement*/

ioctl(fd, PERF_EVENT_IOC_RESET, 0);

ioctl(fd, PERF_EVENT_IOC_ENABLE, 0);

/*start of the code to test*/

AES_set_encrypt_key(key, 128, &e_key);

AES_encrypt(in, out, &e_key);

/*end of the code to test*/

/*disabling performance measurement*/

ioctl(fd, PERF_EVENT_IOC_DISABLE, 0);

Fig. 8. Instrumenting source code for OpenSSL AES using perf.

better compared to both Radamsa and AFL in all scenarios.
However, the absolute effectiveness for the simulated anneal-
ing approach (compared to fuzz testing) is less when compared
to the results in a controlled environment. This is attributed to
the large caches in desktop machines. Due to the large caches,
the dependency between cache performance and test input is
reduced, resulting in a few unique observations by the attacker.
Nevertheless, it is worthwhile to mention that large caches do
not eliminate the dependency between cache performance and
program inputs. This is because different program paths are
likely to exhibit different cache performance. For instance,
even though GDK library routines exhibit a small number
of cache misses, the variation in the observed cache misses
appear due to the varying cache behaviour along different
program paths.

E. RQ3: Efficiency of our test generator

Our test generation is directed towards maximizing certain
objectives, which is the number of unique cache misses being
observed. In particular, we generate different solutions by
analyzing the past executions. Therefore, the generation of
each test takes much longer on average as compared to fuzz
testing. However, a directed approach has the advantage to po-
tentially converge quickly and expose more cache side-channel
leakage as compared to a random approach, as observed from
Figure 6 and Figure 7. In our evaluation, all experiments for a
given subject program, using the simulated annealing, took a
maximum of four hours. In contrast, fuzz testing only took a
few minutes to generate all test inputs. We believe four hours
testing time is acceptable to expose security-related risks for
the chosen subject programs in Figure I. Besides, we plan to
use several optimizations to improve the annealing process. In
this fashion, we can generate a more efficient test generation
tool, which is also directed to expose side-channel leakage of
arbitrary programs.

VI. RELATED WORK

In the last few decades, the research in software testing has
made a significant progress. However, the validation of non-
functional software properties (e.g. performance and energy)

has gained attention only recently. In this paper, we target the
validation of security-related software properties, which are
critically dependent on the underlying execution platform.

Cache-based side-channel attacks have emerged to be se-
rious threat for many systems, including but not limited to
embedded systems. A detailed account on side-channel attacks
has recently been published in a survey [18]. In this paper, we
leverage an attacker model that monitors the cache timing to
discover sensitive information [12]. However, we believe that
the proposed architecture of our test generation is generic and
it can be adapted easily to test against more advanced attacking
scenarios [8], [13], [19], [20].

Recently, a few approaches have been proposed to quantify
the information leak through cache side channels [17], [22].
These works are based on static analysis and therefore, they
suffer from the presence of false positives. Since our approach
is based on testing, it does not generate any false positive.
Moreover, we generate witnesses for each observed cache
behaviour. These witnesses can further be used for testing and
debugging. Our approach is orthogonal to works related to
the verification of constant-time cryptographic software [9],
[11]. In particular, our approach targets arbitrary binary code
and it is not limited to the verification of constant-time
cryptographic software. Besides, our proposal has a significant
flavor of testing and debugging, as we generate witnesses for
observed cache behaviour through directed test generation. In
the past year, research in software testing has focused on
using symbolic execution and Max-SMT to quantify side-
channel leakage [23]. In contrast to our test generator, this
work does not take into account side-channel leaks through
micro-architectural entities, such as caches. Moreover, we also
evaluate our test generator to validate the cache side-channel
leakage in real hardware.

Our work is orthogonal to approaches that propose coun-
termeasures against side-channel attacks [16], [24], [27]. Of
course, we believe that the open platform provided by our
work can be utilized as a valuable tool to validate existing
and new countermeasures. In particular, as we target arbitrary
binary code, we can use our test generator to discover potential
flaws in countermeasures proposed to mitigate cache side
channels.

In contrast to our recent approach [14], the approach pro-
posed in this paper does not explicitly model hardware caches.
Instead we learn cache behaviour on-the-fly and therefore,
we can show the application of the approach also on real
hardware.

Finally, static cache analysis [25] is an active and chal-
lenging research topic. Compared to static cache analysis, our
approach has flavors of testing and debugging. As a result, we
believe that our work can be leveraged to drive security-related
optimizations.

In summary, we have proposed a test generation framework
to validate arbitrary software against cache-based side-channel
attacks. To the best of our knowledge, this is the first search-
based approach that systematically discovers witnesses to
validate cache side-channel leaks of a program.

VII. THREATS TO VALIDITY

Our framework does not exhibit false positives, therefore the
computed cache side-channel leak indeed appears in real exe-
cution. However, our framework should not be used to prove
the absence of cache side-channel leak. Software systems, that
must adhere to zero leakage, can leverage our test generator
to discover implementation flaws early during the design.

In this paper, we have targeted cache timing attacks. There
exists other cache attacks [8] not covered in this paper.
Therefore, our test generator cannot be used directly to validate
software systems against such cache attacks. However, we
believe that our test generation strategy is quite generic and
it can be adapted easily to account for other cache attacks
by reformulating the objective function of a solution. Besides,
the open platform of the test generator facilitate research in
this direction and improve the state-of-the-practice in testing
software non-functional properties.

As discussed in the evaluation, it is virtually impossible to
reduce all noise in measuring cache performance for complex
execution platforms. We have reduced the impact of noise in
the evaluation via running a single test multiple times, using
statistical metrics, isolating executions in a single core and
using performance counters provided by the operating system.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have introduced the test generation prob-
lem to validate cache side-channel leakage of an arbitrary soft-
ware. We have shown that such a problem differs from classic
program-path exploration problems. The key insight behind
the test generation problem is to systematically explore the
cache behaviour. Since cache behaviour critically depends on
the underlying execution platform, it is crucial for such a test
generator to understand the influence of execution platforms on
the generated tests. Following this insight, we have designed a
simulated-annealing-based test generation algorithm in order
to expose the cache side-channel leakage of a program. Our
evaluation highlights cache side-channel leakage in real-world
programs from OpenSSL and Linux GDK libraries, both on
a simulated environment and on a real hardware. We also
show that our directed approach is more effective in revealing
cache side-channel leakage than state-of-the-art fuzz testing
tools. Following this result, we believe that other search-based
testing approaches, such as genetic programming, will also be
effective in exposing cache side-channel leakage of software.

The key intuition in this paper reflects on the importance
of exploring the interaction between software systems and the
underlying execution platform. This is critical to understand
several other non-functional properties, such as performance,
energy and robustness among others. Therefore, we believe
that we can extend our work in several directions to validate
software non-functional properties. In particular, we plan to
leverage machine learning to understand the behaviour of
execution platform and design better test generation method-
ologies that target software non-functional properties. We also
plan to investigate appropriate synergies between symbolic
execution and search-based methods in this direction. Finally,

we aim to use the power of our test generator to detect
timing covert channels. We believe this is possible, as our
test generator explores timing behaviour of a program and
any significant deviation from such timing can be detected
efficiently at runtime.

REFERENCES

[1] Advanced Encryption Standard Implementation. https://github.com/
B-Con/crypto-algorithms.

[2] GDK keyboard handling library. https://developer.gnome.org/gdk3/
stable/gdk3-Keyboard-Handling.html.

[3] gdk keyval from name. https://developer.gnome.org/gdk3/stable/
gdk3-Keyboard-Handling.html#gdk-keyval-from-name.

[4] gdk keyval to unicode. https://developer.gnome.org/gdk3/stable/
gdk3-Keyboard-Handling.html#gdk-keyval-to-unicode.

[5] ioctl. http://man7.org/linux/man-pages/man2/ioctl.2.html.
[6] OpenSSL Library. https://github.com/openssl/openssl/tree/master/crypto.
[7] perf event open. http://man7.org/linux/man-pages/man2/perf event

open.2.html.
[8] Onur Acıiçmez and Çetin Kaya Koç. Trace-driven cache attacks on

AES. In Information and Communications Security. Springer, 2006.
[9] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupres-

soir, and Michael Emmi. Verifying constant-time implementations. In
USENIX, pages 53–70, 2016.

[10] Todd Austin, Eric Larson, and Dan Ernst. SimpleScalar: An infrastruc-
ture for computer system modeling. Computer, 35(2), 2002.

[11] Gilles Barthe, Gustavo Betarte, Juan Diego Campo, Carlos Daniel Luna,
and David Pichardie. System-level non-interference for constant-time
cryptography. In CCS, pages 1267–1279, 2014.

[12] Daniel J Bernstein. Cache-timing attacks on AES, 2005.
[13] Billy Bob Brumley and Risto M Hakala. Cache-timing template attacks.

In ASIACRYPT. Springer, 2009.
[14] Sudipta Chattopadhyay. Directed automated memory performance

testing. In TACAS, 2017.
[15] Sudipta Chattopadhyay, Moritz Beck, Ahmed Rezine, and Andreas

Zeller. Quantifying the information leak in cache attacks through
symbolic execution. CoRR, abs/1611.04426, 2016.

[16] Stephen Crane, Andrei Homescu, Stefan Brunthaler, Per Larsen, and
Michael Franz. Thwarting cache side-channel attacks through dynamic
software diversity. In NDSS, 2015.

[17] Goran Doychev, Boris Köpf, Laurent Mauborgne, and Jan Reineke.
CacheAudit: a tool for the static analysis of cache side channels.
TISSEC, 18(1):4, 2015.

[18] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of
microarchitectural timing attacks and countermeasures on contemporary
hardware. In Cryptology ePrint Archive, 2016. https://eprint.iacr.org/
2016/613.pdf/.

[19] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template
attacks: Automating attacks on inclusive last-level caches. In USENIX
Security, 2015.

[20] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games–
bringing access-based cache attacks on AES to practice. In IEEE
Symposium on Security and Privacy. IEEE, 2011.

[21] Aki Helin. Radamsa. https://github.com/aoh/radamsa.
[22] Boris Köpf, Laurent Mauborgne, and Martı́n Ochoa. Automatic quan-

tification of cache side-channels. In CAV. Springer, 2012.
[23] Corina S. Pasareanu, Quoc-Sang Phan, and Pasquale Malacaria. Multi-

run side-channel analysis using symbolic execution and max-smt. In
CSF, 2016.

[24] Deian Stefan, Pablo Buiras, Edward Z Yang, Amit Levy, David Terei,
Alejandro Russo, and David Mazières. Eliminating cache-based timing
attacks with instruction-based scheduling. In ESORICS, pages 718–735.
Springer, 2013.

[25] Henrik Theiling, Christian Ferdinand, and Reinhard Wilhelm. Fast and
precise WCET prediction by separated cache and path analyses. Real-
Time Systems, 18(2-3), 2000.

[26] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient cache attacks
on aes, and countermeasures. Journal of Cryptology, 23(1):37–71, 2010.

[27] Zhenghong Wang and Ruby B. Lee. New cache designs for thwarting
software cache-based side channel attacks. In ISCA, pages 494–505,
2007.

[28] Michal Zalewski. American fuzzy lop. http://lcamtuf.coredump.cx/afl.

https://github.com/B-Con/crypto-algorithms
https://github.com/B-Con/crypto-algorithms
https://developer.gnome.org/gdk3/stable/gdk3-Keyboard-Handling.html
https://developer.gnome.org/gdk3/stable/gdk3-Keyboard-Handling.html
https://developer.gnome.org/gdk3/stable/gdk3-Keyboard-Handling.html#gdk-keyval-from-name
https://developer.gnome.org/gdk3/stable/gdk3-Keyboard-Handling.html#gdk-keyval-from-name
https://developer.gnome.org/gdk3/stable/gdk3-Keyboard-Handling.html#gdk-keyval-to-unicode
https://developer.gnome.org/gdk3/stable/gdk3-Keyboard-Handling.html#gdk-keyval-to-unicode
http://man7.org/linux/man-pages/man2/ioctl.2.html
https://github.com/openssl/openssl/tree/master/crypto
http://man7.org/linux/man-pages/man2/perf_event_open.2.html
http://man7.org/linux/man-pages/man2/perf_event_open.2.html
https://eprint.iacr.org/2016/613.pdf/
https://eprint.iacr.org/2016/613.pdf/
https://github.com/aoh/radamsa
http://lcamtuf.coredump.cx/afl

