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Abstract

Real-time and embedded applications often need to satisfy sev-
eral non-functional properties such as timing. Consequently, per-
formance validation is a crucial stage before the deployment of
real-time and embedded software. Cache memories are often used
to bridge the performance gap between a processor and memory
subsystems. As a result, the analysis of caches plays a key role in
the performance validation of real-time, embedded software. In this
paper, we propose a novel approach to compute the cache perfor-
mance signature of an entire program. Our technique is based on
exploring the input domain through different path programs. Two
paths belong to the same path program if they follow the same set of
control flow edges but may vary in the iterations of loops encoun-
tered. Our experiments with several subject programs show that the
different paths grouped into a path program have very similar and
often exactly same cache performance.

Our path program exploration can be viewed as partitioning the
input domain of the program. Each partition is associated with its
cache performance and a symbolic formula capturing the set of
program inputs which constitutes the partition. We show that such
a partitioning technique has wide spread usages in performance
prediction, testing, debugging and design space exploration.

Categories and Subject Descriptors C.3 [Special-purpose and
Application-based Systems]: Real-time and embedded systems

General Terms Design, Performance, Verification

Keywords Cache Memories, Performance testing, Path Explo-
ration, Symbolic Execution

1. Introduction

It is hard to build both functionally correct and high performance
systems. For real-time and embedded software, it is often important
to validate the system for certain non-functional properties, such
as timing. Due to the huge amount of effort employed on the
functionality validation of a software, the problem of performance
validation is usually ignored. As a result, the deployed software
may suffer from some serious performance bottlenecks. Such a loss
of performance is often undesirable for real-time and embedded
software, as most of such software are not just expected to produce
a correct output, but also to produce a correct output within a
specified time bound.
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Memory subsystems, especially caches, have a significant im-
pact on the performance of embedded software. In a typical mem-
ory subsystem, cache memory is several hundred times faster than
the main memory. Therefore, a huge number of cache misses may
lead to several magnitudes of performance degradation. Clearly,
the performance of memory subsystem depends on the memory ac-
cesses made by the processor. On the other hand, the set of memory
accesses made by the processor depends on the type of application
it is running. As a result, the performance of an embedded system
critically depends on the input provided to this specific application.

In this paper, we present a novel approach to partition the
input domain of an application for validating performance. Such
a partitioning strategy produces a performance spectrum of the
entire program. Each partition in the spectrum is associated with
a range of performance and a symbolic formula capturing the set
of program inputs which constitutes the partition. In particular,
we focus on the performance of the memory subsystem in this
work, as cache misses are often the dominating factors for the
performance degradation in embedded software. Although targeted
towards embedded software, we believe that such a partitioning
strategy could be useful for a variety of validation techniques.

To build a performance spectrum of the entire program, we face
two significant challenges. The first problem appears due to the
absence of any performance metric in a user program. Program
behavior is usually captured by its input-output relationship. To
overcome this problem, we instrument the program such that it
computes a performance metric (in particular number of cache
misses) when run on a particular input. Such an instrumentation
is entirely automatic and it does not require any user annotations.

The second and more significant challenge appears in clustering
the input domain with similar cache performance. It is clearly
infeasible to execute a program for all possible inputs and measure
the program performance for each of them. We therefore propose to
explore feasible path programs (instead of feasible program paths)
to partition the input domain of the program. A path program is a
fragment of the original program where all the paths belonging to
the same path program follow the same set of control flow edges,
but may vary in the iterations of loops encountered. Therefore,
a path program groups potentially unbounded number of paths
together.

A crucial observation is that all the paths in a path program ex-
ecute the same set of instructions (but may be in different number
of times and in different order). It is possible that the ordering and
frequency of different instructions may have a significant impact on
the cache performance and therefore, the cache performance of dif-
ferent paths grouped into a path programmay have a wide variation.
However, we observed that a variation of this form mostly captures
some serious cache performance issues, such as cache misses lin-
early increasing with the number of loop iterations due to cache
thrashing (in the presence of small cache size or improper mem-
ory layout). As a result, path program creates a suitable abstraction
for cache performance debugging. On the other hand, if the order-
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Figure 1. (a): Original program where array a is an input variable, (b)&(c)&(d): exploring different path programs, path program fragments
are denoted by thick and solid control flow edges

ing and frequency of different instructions do not have a significant
impact on cache misses, a path program can combine several paths
having similar cache performance. Such a combination strategy is
extremely useful for cache performance prediction and testing, as it
partitions the input domain into a finite number of path programs.
Each such path program corresponds to a set of inputs for which the
program has very similar cache performance. As a result, instead of
concentrating on the set of all inputs, we can only focus on the set
of path programs produced by our framework. Moreover, the path
program abstraction allows us to concentrate on a smaller part of
the program at a time. Therefore, any analysis based on a path pro-
gram is more precise and scalable than the same if applied on the
entire program. We build a framework which dynamically explores
path programs and each path program is analyzed only once during
this exploration. Moreover, such analyses on path programs incre-
mentally build the performance spectrum of the program. There-
fore, at any time, the output from the set of already analyzed path
programs captures a cache performance signature for a subset of
the input domain (covered by the analyzed path programs).

The application of our framework can be summarized as fol-
lows. An immediate usage of our framework will be in performance
prediction. For some arbitrary input provided to an application, we
can locate the path program which captures the respective input and
predict the performance of the application for the same input. The
second significant usage is in performance testing. From the perfor-
mance spectrum (i.e. the set of all path programs), we can generate
concrete inputs which drive the execution of the program towards
performance loss. Such critical test cases can often be missed by
random testing. Thirdly, our framework can be used as a feedback
to the compiler to perform performance optimization. Finally, as
the application run on an embedded system is usually fixed, our
framework can be used to decide an appropriate cache configura-
tion for the system, as evidenced by our experiments.

We have evaluated our framework on several subject programs.
Our experimental results show that we can achieve high accuracy
in predicting performance as the different paths in a particular
path program exhibit similar (and sometimes exactly same) cache
behaviour. In addition, our experimental results also show that the
different paths in a path program are similar in terms of overall
execution time (and not just in terms of the number of cache
misses). This is due to the reason that cache misses are often the
key factors dominating the execution time of these programs.

2. Overview

In this Section, we shall give an outline of our overall technique
using the example in Figure 1. The first problem in performance

analysis appears due to the absence of any performance metric in
a user program. To solve this problem, we instrument the original
program to measure performance. Such an instrumentation is en-
tirely automatic. In this paper, we focus on the cache performance
of a program and for the time being, we shall assume that our in-
strumented program computes the cache performance (i.e number
of cache misses) of the original program when run with a particular
input (as shown in Figure 1(b)-(d)). In this context, we must men-
tion that the instrumented program may itself suffer more number
of cache misses (compared to the original program) due to the addi-
tional instrumented code. However, the instrumented program ma-
nipulates a variablemiss during execution. At the end of executing
the instrumented program, the variable miss exactly captures the
number of cache misses suffered by the original program.

To partition the input domain with respect to cache perfor-
mance, we propose to explore feasible path programs (instead of
feasible program paths). A path program is defined as follows:

DEFINITION 2.1. Assume G = (V,E) is the control flow graph
(CFG) of the program. Given an execution trace π, a path program
Pπ captures a subgraph Gπ = (Vπ, Eπ) of the control flow graph
G, such that Vπ is the set of basic blocks andEπ is the set of control
flow edges executed in π.

Intuitively, a path program is a subset of the original program,
where all the paths belonging to the path program follow exactly
same set of control flow edges, but may vary in the iterations of
loops encountered. Depending on the underlying cache configu-
ration, path program creates a suitable abstraction for cache per-
formance debugging or cache performance prediction/testing. For
very small cache sizes, different paths grouped into a path program
may show wide variation in cache performance – such as cache
misses linearly increasing with the number of loop iterations due to
cache thrashing. On the other hand, for an appropriate cache con-
figuration (i.e. in the absence of heavy cache thrashing), different
paths grouped into a path program may show very similar cache
performance – making the path program a suitable abstraction for
cache performance testing and prediction. Finally, it is still possi-
ble to have a wide variation in unavoidable (i.e. cold) data cache
misses for a single path program. However, such effects can easily
be distinguished by instrumenting the cold data cache misses sepa-
rately (i.e. not counting the cold data cache misses within variable
miss).

The example in Figure 1(a) has 210 different paths, but it has
only three path programs, as shown in Figures 1(b)-(d). The path
programs can be summarized by the following three symbolic for-
mulae on input array a:



• Figure 1(b): S1 ≡ a[1] ≥ 0 ∧ . . . ∧ a[10] ≥ 0.

• Figure 1(d): S2 ≡ a[1] < 0 ∧ . . . ∧ a[10] < 0.

• Figure 1(c): S3 ≡ ¬S1 ∧ ¬S2.

Before any exploration, we first produce a SAT encoding of all
the unexplored path programs. The basic intuition behind the SAT
encoding is to capture the structure of a program control flow graph
(CFG). We associate an atomic proposition pe for each control
flow edge e. pe is true if control flow edge e is executed and
false otherwise. The entire encoding is captured by a propositional
formula in conjunctive normal form (CNF). Figure 1(a) shows the
set of CNF clauses which encodes all the available path programs
(for a formal presentation of this encoding, refer to Section 4.1).

During exploration, we first execute the test program with a
random input and collect the execution trace π. In example 1(a),
assume that only the left leg of the branch conditional a[i] ≥
0 appears in the execution trace π. From this execution trace, we
construct the respective path program. Such a path program also
contains the cache performance instrumentation, where a single
integer variablemiss captures the number of cache misses suffered
by the original program. As a result, bounding the value of variable
miss bounds the number of cache misses suffered by any execution
which might visit exactly the same set of control flow edges as π.
The path program is statically analyzed to compute the bounds on
variablemiss . Therefore, the analysis of the path program produces
a range of cache misses of the form MIN ≤ miss ≤ MAX ,
where MIN and MAX represent the minimum and maximum
number of cache misses, respectively, over the path program being
analyzed. The analysis also computes the weakest invariant on
input variables satisfied by any path in the path program (i.e. the
condition S1 ≡ a[1] ≥ 0 ∧ . . . ∧ a[10] ≥ 0 for the path program
shown in Figure 1(b)). Any standard invariant generation method
can be used for such analysis.

After the analysis of a path program, we add additional CNF
clauses to the SAT encoding, so that we can explore a different path
program in subsequent iterations. As shown in Figure 1(b), we add
the clause ¬(p1 ∧ ¬p2) ≡ ¬p1 ∨ p2 in the existing SAT encoding.
This additional clause symbolically captures the information that
the path program in Figure 1(b) will not be explored in future.

We manipulate the path conditions obtained from previous exe-
cutions and try to deviate towards a different path program. Manip-
ulation of a path condition involves negating the different branches
along the path condition. Assume that we negate the 10-th branch in
the initial execution trace (which results the path program in Fig-
ure 1(b)). Therefore, we get a partial path condition θ ≡ a[1] ≥
0 ∧ a[2] ≥ 0 ∧ . . . ∧ a[9] ≥ 0 ∧ ¬(a[10] ≥ 0). θ is satisfiable,
however, we additionally need to check whether θ belongs to some
already analyzed path program. From the execution trace obtained
for Figure 1(b), we can find that both the legs of the conditional
a[i] ≥ 0 must be executed to satisfy θ. Therefore, both p1 and
p2 must be true. Given p1 = p2 = true, if we find a satisfying as-
signment of the CNF clauses in Figure 1(b), then θ may belong to
some unexplored path program. It turns out that a satisfying assign-
ment of the CNF clauses (reported in Figure 1(b)) is possible with
p1 = p2 = true. As a result, we execute the program on some
input satisfying θ and analyze the respective path program. This
path program is shown in Figure 1(c), which also adds the clause
¬(p1∧p2) ≡ ¬p1∨¬p2 to the SAT encoding. Now consider a par-
tial path condition θ′ ≡ a[1] ≥ 0 ∧ a[2] ≥ 0 ∧ . . . ∧ ¬(a[9] ≥ 0),
after we explore and analyze the path program in Figure 1(c). Even
though θ′ is satisfiable, we know that it must execute both the legs
of the condition a[i] ≥ 0. Therefore, both p1 and p2 must be
true to satisfy θ′. However, there is no satisfying assignment for
the CNF clauses reported in Figure 1(c) with p1 = p2 = true. As
a result, we discard the partial path condition θ′, since any path sat-

isfying θ′ has already been analyzed via the path program in Figure
1(c). We eventually explore the path program in Figure 1(d), which
adds the clause ¬(¬p1 ∧ p2) ≡ p1 ∨ ¬p2 to the SAT encoding.

After analyzing the path program in Figure 1(d), our SAT en-
coder blocks all the three path programs. Note that the three path
programs are blocked by the CNF clauses ¬(p1∧¬p2) ≡ ¬p1∨p2,
¬(p1 ∧ p2) ≡ ¬p1 ∨¬p2 and ¬(¬p1 ∧ p2) ≡ p1 ∨¬p2, as shown
in Figure 1(d). All of the three clauses are satisfiable if and only if
p1 = false and p2 = false. However, due to the structure of the
CFG, we encode the CNF clause pe ∨ p5 ⇒ p1 ∨ p2. Therefore,
if both p1 and p2 are false, both pe and p5 are false as well. This
leads to a contradiction to all the CNF clauses reported in Figure
1(d), as pe (which captures the single program entry) must be true
for any path program (as denoted by the CNF clause pe separately
in the encoding). As a result, our exploration loop terminates at this
stage, since we do not have any more unexplored path program.

It is important to note that the path program in Figure 1(c)
does not cover the path programs in Figure 1(b) and Figure 1(d).
The path program in Figure 1(c) takes both legs of a[i] ≥ 0

conditional at least once. Therefore, the path program in Figure
1(c) groups 210 − 2 different paths.

3. Cache performance instrumentation

Given a program P , we annotate the program to compute the num-
ber of cache misses suffered by P . Let us assume Pmiss is the
annotated program. Pmiss depends on the underlying cache pa-
rameters, namely, number of cache sets, cache line size, cache as-
sociativity and the cache replacement policy. The main advantage
of such a code instrumentation technique is that it can easily be
changed to handle a variety of cache architectures. The primary
goal of such instrumentation is to integrate a light-weight cache
model inside the original program, rather than just measuring the
cache performance for a particular execution. Such an integrated
cache model is used to compute the bound on cache misses via
static analysis.

The annotated program Pmiss captures the number of cache
misses suffered by P via a single global variable miss . It is im-
portant to note that the annotated program Pmiss may itself suf-
fer more number of cache misses than P due to the additional in-
strumented code. However, during execution, Pmiss manipulates a
global variable miss in such a fashion that the final value of miss
exactly captures the number of cache misses suffered by P . The
relation between the original program P and the instrumented pro-
gram Pmiss can be formalized via the following property:

PROPERTY 3.1. For a particular cache configuration CF , let us
assume that CM is the number of cache misses suffered by P for
some input combination I. For the same cache configuration CF ,
assume that Pmiss is the instrumented version of program P . If
CM′ denotes the value of variable miss at the end of executing
Pmiss on input combination I, then CM = CM′.

Cache configuration

instrument

Set of memory 

blocks accessed by

output
input

miss = cache miss suffered by
with cache configuration and input 

CF Pmiss

P

P

I

P
CF I

Figure 2. Cache performance instrumentation

Figure 2 shows the key relation (captured by Property 3.1)
between P and Pmiss in our proposed framework.
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Figure 3. Instrumentation for (a) FIFO cache replacement policy,
(b) LRU cache replacement policy.

In the following, we shall show the code annotation technique
for two widely used cache replacement policies - first-in-first-out
(FIFO) and least recently used (LRU).

Figure 3(a) shows the instrumentation for FIFO cache replace-
ment policy. The original CFG is shown at the top of Figure 3(a).
For the sake of simplicity, we shall illustrate the instrumentation
of the path program which contains basic blocks B2 and B3. For
the sake of illustration, let us assume that basic block B2 accesses
memory block m1, basic block B3 accesses memory block m2
and m1 conflicts with m2 in the cache. In general, the cache con-
flict pattern of different memory blocks can be determined stati-
cally from the respective cache configuration (i.e. number of cache
sets and cache line size). The sole purpose of the code instrumenta-
tion is to compute the number of cache misses faced by the original
code. A cache miss can happen for the following reasons: i) Cold
cache miss happens when a memory block is accessed for the first
time, and ii) Conflict miss and capacity miss happen when the num-
ber of cache conflicts faced by a memory block exceeds the cache
associativity. The total number of cache misses is captured by a
variable miss as shown in Figure 3(a). Block I1 captures the cold
cache miss suffered by memory blockm1 and block I2 updates the
number of conflict and capacity misses suffered by m1. Variables
C m1 and C m2 serve the purpose of counting cache conflicts
to memory block m1 and m2, respectively and assoc represents
the associativity of the cache. flag m1 and flag m2 are used to
distinguish the first accesses tom1 andm2, respectively.

Nevertheless, to update the number of conflict and capacity
misses, we need to update the cache conflicts faced by each mem-
ory block at appropriate places. Updating such a cache conflict de-
pends on the underlying cache replacement policy. In FIFO replace-
ment policy, cache conflict to a memory block is increased when-
ever a new memory block enters the same cache set. In 3(a), since
m1 and m2 conflict in the cache, the conflict count to m2 (i.e.
C m2 ) is increased whenever m1 makes a new entry to the cache
(i.e. for all types of cache misses faced bym1). The annotated code
for memory blockm2 is entirely symmetric to the code inserted for
memory blockm1.

Assuming that the loop in Figure 3(a) executes 100 times, the
value of miss will be 200 for a direct mapped cache (i.e. assoc is
1 in Figure 3(a)) at the end of execution. On the other hand, for a
2-way set-associative cache (i.e. assoc is 2 in Figure 3(a)), value of
miss would be 2 at the end of execution. In both the cases, value of
miss capture the number of cache misses suffered by the original
code (i.e. the path program containing basic blocks B2 and B3),
hence satisfying Property 3.1.

Updating the cache conflict is slightly different in LRU com-
pared to FIFO. In FIFO replacement policy, the state of the cache
does not change on a cache hit. On the other hand, for LRU re-
placement policy, each memory block becomes the most recently

used (i.e. its cache conflict is reset to zero) whenever it is accessed.
Therefore, for any access of a memory block, we set its cache con-
flict count to zero (e.g. in Figure 3(b), C m1 is set to zero before
accessing m1). Moreover, accessing a memory block m increases
the conflict to all the memory blocks which were more recently
used than m before the access. In Figure 3(b), flag m12 tracks
which memory block is more recently used, m1 or m2. flag m12
is set to one if m1 is more recently used than m2 and zero oth-
erwise. Clearly, if m1 is not in the cache, we can always assume
thatm1 is the least recently used memory block. Therefore, for all
types of cache misses ofm1, we set flag m12 to zero. A symmet-
rical transformation is also applied before accessing m2. Finally,
we increment the conflict to m2 (as shown by block I3 in Figure
3(b)) if and only ifm2 was more recently used thanm1 before the
current access ofm1 (i.e. flag m12 is set to zero).

In general, our code instrumentation technique traverses all the
basic blocks of P , computes the set of memory blocks accessed
therein and it inserts additional code (as shown in Figures 3(a)-(b))
for each memory block at each control flow edge of P . The essence
of such a transformation is to integrate a cache model inside the
original program P . As shown in Figures 3(a)-(b), such a modeling
of cache has been accomplished via the manipulation of a variable
miss . Therefore, statically bounding the value of miss directly
gives a bound on the number of cache misses suffered by P .

Challenges to handle data accesses For measuring data cache
performance, the basic structure of the instrumentation is exactly
the same as described in the preceding. However, it is worthwhile
to note that statically estimating the set of memory blocks for a data
access is very challenging. Existing research on address analysis
[6] has looked at the problem of estimating an over-approximation
of memory blocks accessed by each data reference. Since our
instrumentation walks through the static control flow graph, it also
needs to know the set of memory blocks accessed by each data
reference. Once such an address analysis is performed, we can
use the set of computed memory blocks by address analysis to
instrument the code.

In our current implementation, however, we do not handle
complex data memory accesses through pointers. Moreover, as
our instrumentation statically needs to know the set of memory
blocks, we currently do not handle dynamic memory allocations.
Our framework currently handles accesses to scalar variables and
static arrays. Array accesses inside a loop captures a special case.
Note that different elements of an array can be accessed in differ-
ent iterations of a loop. This is different from instruction memory
block accesses, as every iterations of a loop access the same mem-
ory block for a specific instruction. As a result, we can add the
instrumentation of an instruction memory block independent of
loop iteration values (as shown in Figure 3).

if (k >= 0 && k <= 3)
/* Instrumented code for memory block m1 */

else if (k > 3 && k < 8) 

/* Instrumented code for memory block m2 */

}

while (i < 8) {

k = f(i);

x += a[k];

while (i < 8) { Data cache instrumentation 
for the array accessk = f(i);

x += a[k];
}

Array a accesses 

and m2
memory block m1

Figure 4. Instrumentation for array accesses

The minor change required for array accesses is shown in Figure
4. Assume that array elements a[0 . . . 3] accesses memory block



m1 and array elements a[4 . . . 7] accesses memory blockm2. Such
information can be computed from the base address of array a. The
instrumentation for the array access is shown in Figure 4. Before
the access, we check the bound of the array index. If the array
index (i.e. k) is between 0 and 3, we add the instrumentation code
for memory block m1 (exactly in the same fashion as shown in
Figure 3). Similarly, if k ∈ [4, 7], we add the instrumentation code
for memory block m2. Note that the important difference is made
by the conditional instrumentations. Such conditional checks are
performed to compute the specific memory blocks being accessed
from an array. The instrumentation is entirely automatic.

4. Analysis framework

Broadly, our input domain partitioning framework consists of two
different steps: symbolic encoding of different path programs (Sec-
tion 4.1) and systematic exploration of path programs to partition
the input domain with respect to cache performance (Section 4.2).
The symbolic encoding is used as an oracle to the path program
exploration, so that it analyzes a path program only once.

4.1 SAT encoding

The SAT encoder symbolically encodes all the unexplored path
programs. Due to the significant progress in SAT solver technolo-
gies, it is shown in [16] that such a symbolic encoding makes the
path program enumeration feasible in practice. However in [16], all
loops are treated in a monolithic fashion. More precisely, two path
programs Pπ = (Vπ, Eπ) and P

′
π = (V ′

π, E
′
π) are distinguished in

[16] if and only if there exists an edge e such that

• e ∈ Eπ , e /∈ E
′
π and e is a control edge outside of any loop, or

• e ∈ E′
π , e /∈ Eπ and e is a control edge outside of any loop.

Therefore, to encode the notion of path program abstraction
used in our framework, we extend the symbolic encoding used in
[16] as follows. For each control flow edge e in the program, we
introduce an atomic proposition pe. The truth value of pe captures
the execution of control flow edge e. pe is true if control flow
edge e is executed, and false otherwise. We distinguish among the
following two types of clauses: MSCC clauses and loop clauses.

MSCC clauses: These are the clauses proposed in [16]. MSCC
clauses are created on the maximal strongly connected decompo-
sition (MSCC) of the program control flow graph (CFG). In the
MSCC decomposition of a CFG, a control flow is represented
only across two different MSCCs. All other control flows inside an
MSCC are hidden. Therefore, each control flow edge in the MSCC
decomposition can be executed at most once. Assume ED repre-
sents the set of control flow edges in the MSCC decomposition.
Therefore, ED includes only the set of control flow edges which
do not appear inside any loop or recurrences. Without loss of gen-
erality, let us assume that ne (nf ) represents the designated entry
(exit) node of the program. We generate the following clauses:

onlyOne(out(ne)), onlyOne(in(nf )) (1)

∧

e∈ED,src(e) 6=ne

pe ⇒ onlyOne(in(src(e))) (2)

∧

e∈ED,end(e) 6=nf

pe ⇒ onlyOne(out(end(e))) (3)

where src(e) and end(e) represent the source and target node
of a directed control flow edge e. On the other hand, in(n) and
out(n) represent the set of predecessors and successors of node
n, respectively. onlyOne(E) is a propositional formula which
denotes that exactly one control flow edge in E can be executed.

Therefore, onlyOne(E) is defined as follows:

onlyOne(E) ≡
∨

e∈E

pe ∧
∧

e,f∈E.e6=f

pe ⇒ ¬pf (4)

Loop clauses: Assume that b is a basic block appearing inside
some loop. Since b is inside a loop, we can no longer say that
exactly one predecessor or successor can appear in the execution.
However, we can generate the following clause to distinguish the
execution of b: ∨

e∈in(b)

pe ⇔
∨

e′∈out(b)

pe′ (5)

where in(b) and out(b) represent the set of predecessors and
successors of node b, respectively. Intuitively, the above clauses
ensure that some successor of b can be executed if and only if some
predecessor of b is executed.

Similarly, for any loop l, we generate the following clauses:
∨

e∈in(l)

pe ⇔
∨

e′∈out(l)

pe′ (6)

where in(l) and out(l) represent the set of entry and exit control
flow edges of loop l, respectively. The above clauses denote that if
a loop l is entered, it will exit eventually. These clauses also capture
the fact that every loop occurring in the program is bounded.

Clauses in Equation 5 and Equation 6 are introduced by us to
distinguish the different control flow edges inside a loop.

4.2 Dynamic exploration of path programs

Our approach iteratively explores different path programs. In each
iteration, a new test input is generated that may force the execution
through an unexplored path program. This process continues until
we explore all the feasible path programs.

The basic idea behind our exploration algorithm is as follows.
We first run the program for a random test input and collect the
execution trace. We then construct a path program from this ex-
ecution trace. The path program is analyzed to produce a cache
miss range - meaning the analysis computes the lower bound and
the upper bound on the number of cache misses suffered by the
path program. To continue with the exploration process, we need to
generate an input that may deviate the execution towards a different
path program. In a broader perspective, therefore, the path program
exploration process needs to perform two different tasks: first, gen-
eration of different inputs through SMT-based constraint solvers.
Such an input generation involves manipulating and solving path
conditions from previous executions. Secondly, before generating
an input from a path condition, we need to check whether the path
condition belongs to some explored path program. Such a checking
is performed by satisfiability testing via a propositional formula,
which in turn encodes the set of all unexplored path programs.

Algorithm 1 captures the core of our dynamic path program ex-
ploration technique. As we mentioned in the preceding, we use the
SMT-based constraint solvers to generate different inputs. More-
over, we use a propositional formula to track the set of unexplored
path programs. At any point of time, Φ encodes the set of of all un-
explored path programs. Assume that the executed path for a test in-
put τ is π and the corresponding path condition isψ1∧ψ2∧. . .∧ψk .
We want to find a test input τ ′ which deviates the execution from
π and also walks through an unexplored path program. The de-
viation is made by negating any of the branch conditions appear-
ing in π. If we want to deviate the execution at the r-th branch,
the inputs to the program must satisfy the partial path condition
θ ≡ ψ1 ∧ . . .∧ψr−1 ∧¬ψr . If θ is unsatisfiable, then θ resembles
an infeasible path in the program and we discard it immediately.
However, even if θ is satisfiable, it may walk through some previ-
ously explored path program. Therefore, we need to check whether



Algorithm 1 Dynamic exploration of path programs

1: Input:
2: P , Pmiss: original and instrumented program
3: Output:
4: A set of feasible and analyzed path programs
5:

6: AllPc = unexplored = empty
7: /*build a SAT encoding of the entire program P */
8: Φ← SATEncode(P)
9: select a random input τ
10: ExecuteAndAnalyze(P ,τ ,Φ)
11: while unexplored 6= empty ∧Φ is satisfiable do
12: select ϕ ∈ unexplored
13: remove ϕ from unexplored
14: let ϕ← ψ1 ∧ ψ2 ∧ . . . ∧ ψr−1 ∧ ψr

15: θ ← ψ1 ∧ ψ2 ∧ . . . ∧ ψr−1 ∧ ¬ψr

16: {b1, . . . , bk} ← set of control flow edges in P that are
17: executed by any path satisfying θ
18: η ← Φ ∧ pb1 ∧ . . . ∧ pbk
19: /* analyze only an unexplored path program */
20: if η and θ are satisfiable then
21: tθ ← some concrete inputs satisfying θ
22: ExecuteAndAnalyze(P ,Pmiss,tθ,Φ)
23: end if
24: end while
25:

26: procedure EXECUTEANDANALYZE(P ,Pmiss,τ ,Φ)
27: execute P on input τ
28: let ϕ ≡ ψ1 ∧ ψ2 ∧ . . . ∧ ψk be the path condition
29: /*build all partial path conditions */
30: for i← 1, k do
31: let ϕi ← ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ψi

32: if ϕi /∈ AllPc then
33: AllPc

⋃
= ϕi

34: unexplored
⋃

= ϕi

35: end if
36: end for
37: let π be the executed path on input τ
38: {b1, . . . , bm} ← set of branch edges that appears in π
39: {b′1, . . . , b

′
n} ← set of branch edges in P that does not

40: appear in π
41: ξ ← pb1 ∧ . . . ∧ pbm ∧ ¬pb′1 ∧ . . . ∧ ¬pb′n
42: /* analyze only an unexplored path program */
43: if Φ ∧ ξ is satisfiable then
44: /*construct path program from execution trace π
45: and the instrumented program Pmiss */
46: Pπ ← ConstructPathProgram(π,Pmiss)
47: /*analyze path program Pπ*/
48: AnalyzePathProgram(Pπ)
49: /*block path program Pπ for further exploration*/
50: Φ← Φ ∧ ¬ξ
51: end if
52: end procedure

all the paths resulting from the partial path condition θ belong to
some explored path program. Let us assume that {b1, . . . , bk} is
a common set of control flow edges that must be executed by any
path satisfying the partial path condition θ. This set of control flow
edges can easily be computed from the execution trace π. Assume
that pb1 , . . . , pbk are the respective set of edge predicates used for
the control flow edges b1, . . . , bk in the SAT encoding of P . The
formula η ≡ Φ ∧ pb1 ∧ . . . ∧ pbk is unsatisfiable only if each pro-
gram path executing the set of control flow edges {b1, . . . , bk} has
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Figure 5. Analysis of a path program, array a is the input

been covered by an explored path program (recall that Φ encodes
all the unexplored path programs). As a result, if η is unsatisfiable,
we do not explore any path resulting from the partial path condition
θ. In case, both θ and η are satisfiable, we generate a new test input
from θ and try to deflect towards an unexplored path program.

Constructing a path program A path program is constructed
from a particular execution trace π of P and the instrumented
program Pmiss. Assume that Bπ denotes the set of executed basic
blocks. A path program Pπ = (Vπ, Eπ) includes the set of basic
blocks Bπ and additionally, it includes the following basic blocks:

• If the control flow (Bi, Bj) appears in π, then IBi→Bj
∈ Vπ ,

where IBi→Bj
is the set of all instrumented basic blocks (in

Pmiss) inserted along the edge (Bi, Bj).

As an example, consider the instrumented program fragment of
Figure 3(a). If (B2, B3) and (B3, B2) both appears in π, the
constructed path program includes all the eight instrumented basic
blocks inserted along the edges (B2, B3) and (B3, B2).

Checking an explored path program Assume that we want to
check whether a path π belongs to some explored path program.
Further assume {b1, . . . , bm} is the set of branch edges that appears
in the execution trace π and {b′1, . . . , b

′
n} is the set of branch edges

that does not appear in the execution trace π. To check whether
π has already been explored by a path program, we check the
satisfiability of the following formula:

Φ ∧ (pb1 ∧ . . . ∧ pbm ∧ ¬pb′
1
∧ . . . ∧ ¬pb′n) (7)

Recall that pb1 , . . . , pbm , pb′1 , . . . , pb′n are the set of atomic propo-

sitions (used by the SAT encoder) introduced for the branch edges
b1, . . . , bm, b

′
1, . . . , b

′
n, respectively. Since, Φ is used to keep track

of all the unexplored path programs, the above formula must be un-
satisfiable if π has already been covered by a previously explored
path program.

Analysis of a path program The main purpose of the instru-
mented program Pmiss was to enable static analysis on feasible
path programs, which are iteratively explored using Algorithm 1.
The primary goal of the static analysis is to compute a sound lower
bound and a sound upper bound on cache misses suffered by each
path program. Additionally, the static analysis computes a sym-
bolic formula on the input variables that must be satisfied by any



path constituting the respective path program. It is worthwhile to
note that a traditional profiler cannot guarantee any bound on cache
misses. Moreover, a traditional profiler computes information only
for a set of representative inputs. Unlike a traditional profiler, our
framework systematically partitions the input domain of a program
via the exploration of feasible path programs and guarantees the
bound on cache misses for each path program via static analysis.

Recall that a path program Pπ is constructed from the in-
strumented program Pmiss and a feasible execution trace π.
The static analysis on a path program Pπ computes a triplet
〈condPπ ,MinMissPπ ,MaxMissPπ 〉 which has the following in-
terpretation:

• condPπ : a symbolic formula on the input variables, where any
feasible path in Pπ must satisfy condPπ .

• MinMissPπ : minimum number of cache misses suffered by
any path in the path program Pπ .

• MaxMissPπ : maximum number of cache misses suffered by
any path in the path program Pπ .

To compute the triplet 〈condPπ ,MinMissPπ ,MaxMissPπ 〉, we
use standard invariant generation methods (e.g. polyhedra [11],
symbolic execution [1] etc.). Procedure AnalyzePathProgram
(in Algorithm 1) captures the invariant generation.

Figure 5 demonstrates a sample code and the constructed path
program Pπ for an execution with all zero elements of input array
a. In Figure 5, m1 and m2 capture the respective memory blocks
accessed by the code. For the sake of simplicity in this example, we
only show the path program with the instrumentation for instruction
caches. However, as discussed in Section 3, our framework can be
used for both instruction and data caches. The core of path program
analysis is to reason about the value of variable miss (as shown
in Figure 5), which derives MinMissPπ and MaxMissPπ . This
in turn requires generating invariants involving the variable miss .
In the example shown in Figure 5, memory blocks m1 and m2
conflict in the cache. The two loop invariants C m1 ≤ 1 and
C m2 ≤ 1 capture the fact that both the memory blocks m1
and m2 face at most one cache conflict within the loop. These
two loop invariants ensure that the true leg of both the branches
C m1 ≥ 2 and C m2 ≥ 2 can never be executed (since both the
formulae C m1 ≥ 2 ∧ C m1 ≤ 1 and C m2 ≥ 2 ∧ C m2 ≤ 1
are unsatisfiable). As a consequence, the value of variable miss
can be incremented exactly twice – once at the true branch of
flag m1 == 0 and the other at the true branch of flag m2 == 0.
Therefore, the value of variablemiss is bounded by 2 ≤ miss ≤ 2
at the exit of the loop (irrespective of the loop bound). Such an
invariant on variable miss captures the fact that m1 and m2 only
face cold cache misses for any possible execution of Pπ . The
analysis also generates an invariant (on input array a) condPπ ≡
a[1] ≤ 0 ∧ . . . ∧ a[X] ≤ 0, which holds over path program Pπ .

Currently, our framework requires a numeric upper-bound on
the inputs which directly or indirectly (via a chain of data depen-
dencies) affect loop bounds. As a consequence, the computed in-
variants on cache misses are always of the form C1 ≤ miss ≤ C2,
where both C1 and C2 are constants. In the presence of parametric
(or symbolic) loop bounds, the computed cache miss range might
be parametric in terms of the input dependent loop bounds. For the
example shown in Figure 5, if the cache is a direct-mapped cache
and bothm1 andm2 map to the same cache set, such a parametric
cache miss range will be of the form 2X ≤ miss ≤ 2X (consid-
ering X as an input). Lifting the numeric performance range to a
parametric range is a subject of our future work.

Termination Our exploration process terminates when the SAT
encoder blocks all possible path programs (i.e. Φ becomes unsat-
isfiable). The exploration also terminates when Φ remains satisfi-
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Figure 6. Implementation framework

able, but all unexplored path conditions are visited (i.e. unexplored
becomes empty). Such a situation may arise in the presence of in-
feasible path programs, as we only explore feasible path programs.

5. Implementation

Figure 6 shows the outline of our implementation framework. We
use the LLVM compiler infrastructure [2] as a baseline of our im-
plementation. Individual benchmarks are compiled into LLVM bit-
code format and their control flow graphs are extracted from the
LLVM bitcode. This control flow graph is given as an input to our
analysis framework. We first use the LLVM code generator to gen-
erate the object code for a specific target architecture (e.g. ARM,
PowerPC). From the generated object code, the accessed memory
blocks are extracted and they are mapped appropriately to the re-
spective basic blocks at the LLVM bitcode level. The cache perfor-
mance instrumentation is accomplished by augmenting the origi-
nal control flow graph (CFG) with additional basic blocks (as ex-
plained in Section 3). Such an instrumentation accepts the set of
memory blocks accessed in the target binary and a specific instruc-
tion and data cache configuration. As a result, our framework can
be parameterized with respect to different target architectures and
cache configurations. The execution of the test program is achieved
through LLVM execution engine, from which we also collect the
basic block level execution trace and the respective path condition.
To manipulate and solve different path conditions, we use the STP
solver [4]. We use the minisat satisfiability solver [3] to track the
set of unexplored path programs. For analyzing a path program,
any standard invariant generation method can be applied. In our
current implementation, we modify LLVM-based KLEE symbolic
execution engine [1] to generate invariants on the number of cache
misses suffered by the original program (i.e. generating invariants
on the variablemiss as explained in Section 4.2). In general, KLEE
performs a symbolic execution of the entire program. We modify
the source code of KLEE to selectively analyze a path program,
and thereby making a single invocation of KLEE much faster than
usual. Each analysis by KLEE produces a cache miss interval and
a symbolic formula on the input variables.

6. Evaluation

In this section, we shall evaluate our framework with different sub-
ject programs. Some salient features of these subject programs are
listed in Table 1. Our proposed framework aims to partition the
input domain with respect to cache performance. Such a frame-
work is mostly suitable for an application which exhibits varying



Program Lines of C code Object code size Basic blocks
(ARM)

Papabench [14] 592 14240 bytes 311

Sha [15] 236 6104 bytes 77

Susan [15] 260 4172 bytes 82

JetBench [21] 766 33872 bytes 922

Nsichneu [5] 4255 49908 bytes 754

Table 1. Subject programs used for evaluation

cache performances for the same input size, but different input val-
ues. Therefore, we try to find subject programs which can poten-
tially show varying performances for the fixed input size but dif-
ferent input values. Such a program should potentially have many
input-dependent branches in the control flow graph. As a result,
our framework will explore multiple path programs capturing the
different outcomes of such input dependent branches. The charac-
teristics of the subject programs can be summarized as follows:

• Papabench is an unmanned aerial vehicle (UAV) controller
program which performs the navigation and stabilization tasks
of an aircraft. We use the autonavigation component of
Papabench due to the presence of many input dependent
paths in the program. The autonavigation component
goes through different control locations. The control flow for a
typical execution depends on the starting position of navigation
and several input signals. Therefore, the autonavigation
component has the potential to exhibit varying performances
with respect to different input values.

• Susan is an image processing kernel which manipulates an
image matrix. The value of different image pixels are checked
multiple times and the program has several control paths de-
pending on the value of pixel.

• JetBench is a hard real-time, simulation of jet engines. De-
pending on the value of input flight profile data, this program
performs different thermo-dynamic calculations. Therefore, we
try to categorize the input flight profile data with respect to the
performance of JetBench.

• Nsichneu is a petri-net simulator, which has a huge number
of input dependent branches. The program simulates a petri-net
along different control paths depending on the marked positions
(given as an input).

• Finally, we show a program Shawhich does not have any input
dependent branch. The performance of Sha depends only on
the input size. For such programs, we can use our framework to
see the change in performance with respect to the input size.

We use our evaluation framework to answer the following crucial
questions related to the performance validation of a program.

• Performance prediction: Given an arbitrary input, can we pre-
dict the program’s cache performance with respect to the input?
During the testing of an embedded software, the real execution
platform may not be available. Therefore, tools and techniques
to predict performance in the absence of real execution platform
are crucial for embedded software.

• Performance testing: Can we synthesize inputs which may
force the program to suffer heavy number of cache misses?

• Performance debugging: Can we replay some useful informa-
tion to the user/compiler to pinpoint the reason of serious cache
performance issues (e.g. cache thrashing)?

• Design space exploration: Can we decide the appropriate exe-
cution platform (e.g. cache configuration) for a particular appli-
cation so that it meets certain timing guarantees?

Key result Table 2 reports a summary of our experiments. We
use a 2-way associative, instruction and data cache with 16 bytes
of cache line size and FIFO replacement policy. The results are
reported for a 4 KB instruction and 4 KB data cache. The cache
sizes are chosen in such a fashion so that they exhibit sufficient
amount of conflicts in instruction and data caches. In Table 2, we
also report the overall execution time of a path program. To com-
pute the overall execution time, we add the total instruction and
data cache miss penalty suffered by all the cache misses with the
computation cost of all the executed instructions. Both instruction
and data cache miss penalty is taken as 100 CPU cycles. We per-
form all experiments on an Intel i7-core processor having 8 GB of
RAM and running Ubuntu 10.04 operating system. The computa-
tion time in Table 2 reports the total time taken by our framework
for each subject program; including the cache performance instru-
mentation, path program exploration, execution of the program and
path program analysis.

Due to space constraints, we cannot report the cache perfor-
mance of all the path programs. However, Table 2 reports the cache
miss range of maximum variation for each subject program. Four
rightmost columns of Table 2 capture the feasible path program
where the performance range (i.e. the interval for instruction cache
miss, data cache miss and overall execution time) has maximum
variation. The maximum variation in the execution time of a fea-
sible path program is shown in the last column. For an interval
[min,max], the variation is computed as max−min

min
×100%. Note

that the reported variation is reasonably short (maximum variation
of 20% in Susanwhere the absolute numbers of cache misses have
small values). As a result, we can observe that path program is a
suitable abstraction to combine several paths having similar cache
performances.

Currently, our framework only computes an absolute range of
cache misses for all feasible path programs. It is, in general, possi-
ble that the value of cache miss depends on the bound k of some
loop, where k is an input (e.g. input size). As a result, the com-
puted cache miss range could be parametric in terms of such input
variable k. In our current implementation, we do not handle such
parametric cache miss expressions and our framework requires the
bound on such input variables k.

For fixed input size, Sha does not have any input dependent
program branches. Therefore, the performance of Sha is indepen-
dent of input values and our framework produces exactly one path
program for Sha (for an input size of 8 KB). Note that program
Nsichneu reports constant cache performance for the explored
(i.e. feasible) path programs. Similarly,Susan shows constant data
cache performance for each feasible path program. Such constant
cache performance can be generated when each explored (i.e. feasi-
ble) path program satisfies at least one of the following two condi-
tions: i) the path program contains exactly one path, or ii) any path
constituting the path program faces only cold cache misses (for all
the subject programs in Table 2, cold cache miss is constant for a
given path program and input size).

In the following discussion, unless otherwise stated, the re-
ported cache miss corresponds to the total number of cache misses,
including the number of instruction cache misses and data cache
misses for the respective cache configurations.

Performance prediction Recall that the analysis of a path pro-
gram pi computes a triplet 〈condpi ,MinMisspi ,MaxMisspi 〉.
condpi is a symbolic formula which captures the set of inputs along
which path program pi is reached andMinMisspi (MaxMisspi ) is
the minimum (maximum) number of cache misses suffered by path
program pi. Assume that we have given an arbitrary input and we
want to predict the performance of the program for this input. Given
an arbitrary input, we can locate the path program pi where the
symbolic formula condpi is satisfied by the same input. Since we



#partitions #infeasible Computation Instruction cache miss Data cache miss Execution time (CPU cycles) Maximum
Subject (#feasible path time (maximum variation (maximum variation (maximum variation variation in
program path programs (in seconds) across any feasible path) across any feasible path) across any feasible path) execution

programs) program program program time

Papabench 20 4×10
8 158 [882,990] [32,37] [100851, 110279] 9.3%

Sha 1 15 20 [243,243] [696,696] [1130039,1130039] 0%

Susan 50 145622 163 [62,78] [15,15] [8109,9769] 20%

JetBench 7 2.7×10
9 250 [532,649] [535,575] [125003, 141213] 13%

Nsichneu 11 > 2
200 192 [9519,9519] [196,196] [1042732,1042732] 0%

Table 2. Path program partitioning of different subject programs. The reported cache miss range captures the feasible path program which
exhibits maximum variation between the minimum and maximum number of suffered cache misses.

partition the input domain, there will be exactly one path program
pi for each such arbitrary input. The located path program pi is
also attached with its cache performance range. Therefore, our pre-
diction will be the cache miss interval [MinMisspi ,MaxMisspi ].
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Figure 7. Cache performance prediction. The vertical bar captures
the predicted cache miss interval and the point along each vertical
bar captures the number of cache misses obtained by executing the
program on the respective input

To check the correctness and accuracy of our prediction, we
first run a subject program for a set of arbitrary inputs. For each
input, we collect the number of cache misses actually suffered at
the end of execution. Moreover, for each such arbitrary input, we
locate the path program pi where the symbolic formula condpi
is satisfied by the same input. For each input i, we compare the
three numbers – the minimum and maximum number of cache
misses associated with the located path program pi (i.e.MinMisspi
and MaxMisspi , respectively) and the actual number of cache
misses (say Cmissi ) obtained by executing the program on input
i. Clearly,MinMisspi ≤ Cmissi ≤ MaxMisspi .

Figure 7 reports the result of cache performance prediction. For
each input, the vertical bar captures the normalized cache miss

interval [1,
MaxMisspi
MinMisspi

] from our prediction and the point along

each vertical bar captures the normalized number of cache misses
Cmissi

MinMisspi
after executing the program on the respective input.

Figure 7 shows that we can obtain reasonably accurate prediction,

as the length of the cache miss interval [1,
MaxMisspi
MinMisspi

] is short. For

Sha and Nsichneu, the cache miss range is constant for each
path program and we always had accurate predictions. The results
from Sha and Nsichneu are not reported in Figure 7.

Performance testing Our proposed framework has a significant
usage in performance testing. Given the set of path programs pro-
duced by our framework, we can find the path program facing
heavy cache misses or creating a severe performance bottleneck.
Since such a path program is also associated with a symbolic for-
mula on the input variables, we can use the SMT solver to gener-
ate a concrete input from this symbolic formula. Such performance
stressing, concrete test inputs can be reported to the developer.

For Nsichneu, we found that two path programs experience
cache misses several magnitudes (more than 10 times) higher than

the other path programs. Similarly, for Papabench, we found that
the path program suffering from heaviest cache misses satisfies an
input value 2. Using our framework, we can quickly locate such
performance stressing path programs (as shown in Table 2, there are
only 11 and 20 path programs for Nsichneu and Papabench,
respectively) and generate a concrete test input from the respective
symbolic formula on the input variables.

Different path programs of Susan also produce diverse cache
performances (with the lowest performing path program having 10
magnitudes higher cache misses than the highest performing path
program). Susan manipulates a character matrix of a fixed size. It
is impossible to test Susan for all such matrices. However, from
the set of explored path programs, we can observe the symbolic for-
mulae on the input matrices which stress the execution of Susan
towards performance loss. Such observation will greatly help in the
performance testing of Susan, as we can pick up the set of appro-
priate test cases from a representative testing pool.

Performance debugging In the preceding, we have discussed the
use of our framework to generate performance stressing test cases.
Along with performance stressing test cases, it is also useful to
report the root cause of performance loss. Since we focus on cache
performance, such a reporting of root cause needs to highlight the
specific program locations/data accesses which are suffering from
heavy cache misses.

We can easily tune our basic framework to highlight the poten-
tial root causes of performance loss. Instead of generating bound on
the overall cache miss count, we can generate bound on the cache
misses suffered at each cache set. Let us assume missi captures
the range of cache misses suffered at cache set i. By checking the
value of each missi, we can locate the memory blocks mapped to
cache set i and subsequently, trace the memory blocks back to the
source code level statements.
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Figure 8. Cache performance debugging

Figure 8 captures a sample output for such modification. We
have mentioned before that two path programs of Nsichneu suf-
fer several magnitudes higher cache misses than the other path pro-
grams. Figure 8 shows a snapshot of the cache misses suffered by
different cache sets. The snapshot is generated in such a fashion
that it exhibits a few (but not all) cache sets suffering from rela-
tively high cache misses. Since the total number of such cache sets



(i.e. the cache sets suffering from relatively high cache misses) may
be arbitrarily high, the total number of cache misses experienced
by the program is several magnitudes higher than the number of
cache misses suffered by a single cache set. It is worthwhile to note
that a traditional profiler may not able to highlight the root causes
of such cache performance issues. A traditional profiler relies on
a few training runs of a program. If the training runs do not go
through the performance stressing path programs, the root causes
of such cache performance issues will remain unknown. The cache
size for our experiments (i.e. to generate Figure 8) is chosen such
that there are no capacity misses. We can observe that a few cache
sets (set 548-558) suffer relatively high cache misses, whereas other
cache sets suffer a small number of cache misses (e.g. set 559-562)
or zero cache misses (e.g. set 563-567). This irregularity of cache
misses often appear due to the improper code/data layout in the
program. We observed that the number of memory blocks mapped
to any cache set starting from 548 to 558 is more than the asso-
ciativity of the cache. Such memory blocks are accessed inside a
loop, introducing cache thrashing. The information generated by
our framework can be replayed back to a compiler. The compiler
can utilize such information for optimizations such as cache lock-
ing (to selectively lock memory blocks in the cache and avoid cache
thrashing) and code positioning (changing the layout of code/data
to avoid cache thrashing).

Design space exploration Finally we show the application of our
framework to choose an appropriate execution platform, specifi-
cally, the right cache configuration. Figure 9 shows the sensitiv-
ity of cache misses (we plot the maximum cache miss suffered
over all the path programs) for two of our subject programs with
respect to different cache configurations and target architectures.
Since our framework can be parameterized with respect to cache
configuration, we can produce such sensitivity graph by running
the cache performance spectrum module multiple times. Figure 9
shows that an 1-way, 16 KB (1-way, 8 KB) cache should be chosen
for Papabench targeting PowerPC (ARM), as the cache miss sta-
bilizes beyond the particular cache configuration. In a similar fash-
ion, a 4-way, 64 KB cache is appropriate for program Nsichneu.
Note that a traditional profiler may not be able to find a training in-
put to stress the execution of the program towards maximum cache
misses. As a result, we might end up choosing an inappropriate
cache using a traditional profiler. This is due to the reason that
the maximum number of cache misses may not stabilize using the
cache configuration chosen by a traditional profiler.
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Figure 9. Cache miss sensitivity w.r.t. cache configuration

The performance of Sha only depends on the input size. Fig-
ure 10 shows the instruction and data cache miss sensitivity suf-
fered by Sha for a direct-mapped, 1 KB cache. With respect to the
input data size, we observe an exponential growth in the number
of cache misses for a direct-mapped, 1 KB cache. Such an expo-
nential growth in cache misses clearly captures a cache thrashing

behaviour. Therefore, we can conclude that 1 KB cache is inappro-
priate for Sha. The instruction cache thrashing entirely disappears
when using a two-way, 8 KB cache (as also evidenced by Figure
10). The growth in data cache misses with respect to input data size
does not disappear with a two-way, 8 KB cache. However, we in-
vestigated that such growths in data cache misses are merely due
to the increased cold data cache misses for increased input size.
Therefore, we can conclude that a two-way, 8 KB cache can be
used for Sha without an appreciable loss of performance.
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Figure 10. Cache miss sensitivity w.r.t. input size

7. Related work

Work on the performance validation of embedded software was
started two decades ago. Previous approaches were mainly based
on static analysis. Analysis of cache performance has been done,
among others, in [23] via abstract interpretation. Recently, such ab-
stract interpretation based cache analysis has been improved by a
gradual and controlled used of model checking in [9]. Such analy-
ses were performed on the entire program for computing its worst
case execution time (WCET). On the other hand, our approach is
orthogonal to these approaches. We partition the input domain of a
program in terms of different path programs. Moreover, our parti-
tioning strategy is dynamic in nature. We only explore a partition
if there exists some feasible path inside it. A different work [20]
uses an evolutionary algorithm to explore program paths for perfor-
mance testing. However, [20] does not partition the input domain
and it also does not guarantee to explore the entire input domain.
The work in [12] employs the idea of pattern recognition to predict
the whole program locality based on a few training runs of the pro-
gram. Unlike our approach, the technique proposed in [12] does not
guarantee to explore the entire input domain. Moreover, the tech-
nique proposed in [12] predicts program performance for a given
input based on the past history/training-set (and the prediction may
be wrong). On the other hand, as our approach is based on pro-
gram analysis, we can always predict a safe lower bound and upper
bound of performance for each of the explored partition.

Our idea is inspired by the recent advances in program path
exploration and satisfiability modulo theory (SMT). Directed test
generation [17] has made significant improvement over random
testing in the past few years. Such test strategies attempt to cover
program paths for testing. On the other hand, we are interested
in building the performance footprint of the entire program. As
there might be an unbounded number of paths in a program, a
path-based search procedure is, in general, infeasible to build a
performance footprint of the entire program. A recent work [22]
has proposed to merge several paths for path-based testing. Two
paths are merged if they have the same input-output relationship.
However, our goal is different - we want to merge different paths
having similar performance rather than merging paths with the
same output expression.

In recent times, the idea of path program has been applied in
[16] for path-sensitive functional verification. Our approach differs
in two key aspects from this work: first, our goal is validating the



performance and secondly, the path program in our framework is
constructed from an execution trace rather than from the static
control flow graph. Therefore, we only analyze a path program that
has at least one feasible execution.

The work in [18] proposes to find the computational complexity
of a program automatically. Similarly, [8] proposes a new approach
to automatically find test inputs for the worst-case computational
complexity. Our work differs from several aspects from these two
previous works: first, our notion of performance is based on the
execution time rather than computational complexity. Secondly, the
primary goal of our framework is to build a performance signature
of the entire program by partitioning its input domain. Of course,
such a partitioning can also be used to generate test inputs for
worst-case performance, as evidenced by our experiments.

Several techniques for program profiling have been studied in
the past few decades (such as [7, 19], among others). Such tradi-
tional profiling techniques can be used to analyze (compressed) ex-
ecution traces (e.g. in [19]) for deriving program hotspots. In con-
trast to our approach, profiling techniques do not guarantee to cover
the entire input domain, instead such profiling techniques rely on
training inputs. Moreover, our approach can act as a complemen-
tary to compute the set of relevant inputs for program profiling.

Recent works [10, 24] have proposed to extend the traditional
profiling technique by determining an empirical cost function. Such
a cost function is found automatically and it captures an approx-
imate cost of the program with respect to different inputs (and
in particular, with respect to different input sizes). Since the ap-
proaches in [10, 24] are based on a few training runs of the pro-
gram, they can only capture an approximate cost of the program for
a fixed input size. On the other hand, since our approach is based on
program analysis, we can provide a sound lower and upper bound
of cache performance. Moreover, the work of [10, 24] do not guar-
antee to capture the performance signature of the entire program.
Our approach does the same by partitioning the input domain, in
the form of representative path programs.

There has been some recent work on detecting performance
bugs in distributed systems [13]. Such work systematically gen-
erates random simulations to detect performance bugs. However,
as the testing is based on random simulations, this approach cannot
guarantee to build any performance footprint of the entire program.

8. Discussion

Summary In this paper, we have proposed an approach to parti-
tion the input domain of a program based on cache performance.
Our partitioning is based on exploring feasible path programs. As
evidenced by our experimental results, the path program abstrac-
tion is suitable for a variety of purposes, such as performance de-
bugging (e.g. to detect cache thrashing), performance prediction
and performance testing. Moreover, we have shown that our pro-
posed framework can be used to decide an appropriate cache con-
figuration for an application.

Limitations Our technique is most suitable for the programs
which exhibit varying cache performances on different input val-
ues. Since our approach computes a sound lower and upper bound
of cache misses by statically analyzing each path program, it has
the general limitations faced by any static analysis technique. Such
limitations include the handling of dynamic memory allocations
and complex pointer aliasing. Besides, in our current implementa-
tion, the static analysis of path programs accounts to majority of
overhead. However, we believe that we can use several matured
and efficient techniques for invariant generations to reduce such
overhead in future.

Future work Our work can be extended in several directions.
In this paper, we have focused on cache miss metric. For the set

of subject programs used in our evaluation, the number of cache
misses dominates the performance. In future, we plan to study other
performance metrics apart from the cache miss metric. Besides, our
framework currently builds the cache performance signature for
the uninterrupted execution of a single program. In the presence
of multi-tasking, a high priority task and external interrupts may
affect the cache content, leading to additional cache misses. We
plan to extend our framework for multi-tasking systems in future.
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