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Abstract—Hard real time systems require absolute guar-
antees in their execution times. Worst case execution time
(WCET) of a program has therefore become an important
problem to address. However, performance enhancing features
of a processor (e.g. cache) make WCET analysis a difficult
problem. In this paper, we propose a novel approach of
combining abstract interpretation and model checking for
different varieties of cache analysis ranging from single to
multi-core platforms. Our modeling is used to develop a precise
yet scalable timing analysis method on top of the Chronos
WCET analysis tool. Experimental results demonstrate that we
can obtain significant improvement in precision with reasonable
analysis time overhead.

I. INTRODUCTION

Worst-case execution time (WCET) analysis of real-time
embedded software is an important problem. WCET es-
timates of tasks are used for system level schedulability
analysis. WCET estimation usually involves a program level
path analysis (to determine the infeasible paths in the
program’s control flow graph), micro-architectural modeling
(to accurately determine the maximum execution time of the
basic blocks), and a calculation phase (which combines the
results of path analysis and micro-architectural modeling).

Micro-architectural modeling usually involves systemati-
cally considering the timing effects of performance enhanc-
ing processor features such as pipeline and caches. Cache
analysis for real-time systems is usually accomplished by
abstract interpretation. This involves estimating the cache
behavior of a basic block B by considering the incoming
flows to B in the control flow graph. The memory accesses
of the incoming flows are analyzed to determine the cache
hits/misses for the memory accesses in B. Since programs
contain loops, such an analysis of memory accesses involves
an iterative fixed point computation via a method known
as abstract interpretation. Abstract interpretation is usually
efficient, but the results are often not precise. This is because
the estimation of memory access behavior are “joined” at the
control flow merge points - resulting in an over-estimation
of potential cache misses returned by the method.

In this paper, we develop a cache analysis framework
which improves the precision of abstract interpretation,
without appreciable loss of efficiency. We augment abstract
interpretation with a gradual and controlled use of model
checking, a path sensitive search based formal verification
method. Because of path sensitivity in its search - model

checking is known to be of high complexity. Hence abstract
interpretation based analysis cannot be naively replaced
with model checking for analysis of cache behavior. Recent
works [1] which have advocated combination of abstract
interpretation and model checking for multicore software
analysis - restrict the use of model checking to program
path level; cache analysis is still accomplished only by
abstract interpretation. Indeed almost all current state-of-the-
art WCET analyzers (such as Chronos [2], aiT [3]) perform
cache analysis via some variant of abstract interpretation.
Model checking is usually found to be not scalable for
micro-architectural analysis because of the huge search
space that needs to be traversed. The main novelty of
our work lies in integrating model checking with abstract
interpretation for timing analysis of cache behavior.

Our baseline analysis is abstract interpretation. Potential
cache conflicts identified by abstract interpretation are then
subjected to model checking. Our goal is to rule out “false”
cache conflicts which can occur only on infeasible program
paths. Such false conflicts are considered by abstract inter-
pretation since its join operator (which merges the estimates
from paths at control flow join points) conservatively consid-
ers all possible cache conflicts on any path in the control flow
graph. The path sensitive search in model checking naturally
rules out the infeasible program paths and the cache conflicts
incurred therein.

One appealing nature of our analysis method is that the
results are always safe. We start with the results from
abstract interpretation and gradually refine the results with
repeated runs of model checking. Model checking is a prop-
erty verification method which takes in a system/program P
and a temporal logic property ϕ, where ϕ is interpreted over
the execution traces1 of P . It checks whether all execution
traces of P satisfy ϕ. Given a potentially conflicting pair
of memory blocks, we can model check a property that the
pair never conflicts in any execution trace of the program.
If indeed the conflict pair is introduced due to the over-
approximation in abstract interpretation - model checking
verifies that the conflict pair can never be realized. We can
then rule out the cache misses estimated due to the conflict
pair and tighten the estimated time bounds.

The property checked in a single run of model check-
ing involves certain cache conflicts identified by abstract

1We consider only Linear Time Temporal Logic properties here.



interpretation - model checking then verifies whether these
conflicts are indeed realizable. Thus, the scalability of our
framework is never in question. Given a time budget T , we
can first employ abstract interpretation and then employ as
many runs of model checking as we can within time T . Of
course, given more time, the results are more precise.

Contributions: In summary, this paper presents a
generic cache analysis framework based on abstract interpre-
tation and model checking. Depending on the time budget
for analysis and the analysis precision required - the frame-
work can be tuned to analyze cache hit/miss classifications
for timing analysis. We further show that the framework can
be instantiated with a wide variety of cache analyses - (i)
analysis of cache behavior in a single program, (ii) analysis
of cache related preemption delay for a multi-tasking system
where the tasks are running on a single core, and (iii)
analysis of shared caches in multi-cores. Our experimental
results on the moderate to large scale WCET benchmarks
[4] show substantial improvement in the precision of timing
analysis results with limited time overheads. This yields
a parameterizable cache analysis framework for real-time
systems which is generic, precise and scalable.

II. RELATED WORK

Since the initiation of WCET analysis research, cache
modeling has been an active topic in this area. Initial works
used Integer Linear Programming (ILP) [5] for modeling
intra-task cache conflicts. However, ILP based approach for
cache modeling faces scalability concerns in terms of analy-
sis time. Subsequently, a novel WCET analysis approach has
been proposed in [6], which efficiently composes abstract
interpretation based micro-architectural modeling and ILP
based path analysis. The solution proposed in [6] has been
proved scalable and it has also been adopted in commercial
tool chain ([3]).

In multi-tasking system, additional difficulties arise in
modeling inter-task cache conflicts. Inter-task cache conflicts
are generated by a high priority task when it preempts a
low priority task. The bound on additional cache misses
due to preemption is called cache related preemption delay
(CRPD). In last decade, there has been an extensive amount
of research to estimate CRPD [7], [8], [9] using abstract
interpretation. Recently, two advancements in CRPD esti-
mation ([10] and [11]) have improved and generalized the
previously proposed approaches for set-associative caches.

With the extensive deployment of multi-core architectures,
it has also become important to adopt the existing cache
analysis techniques for multi-cores. Multi core architectures
employ shared resources (e.g. shared cache). Therefore, a
few research groups have already proposed the modeling
of shared cache ([12], [13] and [14]) based on abstract
interpretation.

In [15], it is argued that model checking alone is not
suitable for WCET analysis due to the state space explosion

problem. On the other hand, [16] uses model checking alone
for cache and path analysis. However, [16] does not employ
the modeling of other important micro-architectural features
(e.g. pipeline) and it is unclear whether the employed tech-
nique would remain scalable in presence of pipeline or other
micro-architectural features. In contrast, our technique can
easily be integrated with the modeling of different micro-
architectural features (e.g. pipeline). Nevertheless, some
recent advances [17] have employed full model checking
based approach for software timing analysis in pipelined
processor. However, [17] faces some common scalability
issues (e.g. state space explosion) in presence of caches.

In summary, abstract interpretation based approach is
scalable for cache analysis and it is easy to integrate with
other micro-architectural features (e.g. pipeline). On the
other hand, model checking can give the most accurate
result, but it is difficult to scale in terms of analysis time. A
recent approach [1] has therefore looked at the combination
of abstract interpretation and model checking. However, [1]
uses model checking for path analysis only; cache analysis is
performed by conventional abstract interpretation methods.
In this paper, we study the combination of model checking
and abstract interpretation for different cache analysis to
design a scalable and precise WCET analysis framework.
Our analysis can be stopped after any number of model
checking steps and the results are always safe. Thus our
framework gives the designer a precision-scalability tradeoff
which (s)he can choose to use.

III. BACKGROUND

WCET analysis of a single task: WCET analysis of a
single task is broadly composed of two different phases: i)
micro-architectural modeling and ii) path analysis. Micro-
architectural modeling analyzes the timing characteristics of
different hardware components (e.g. cache, pipeline, branch
predictor) and works at the granularity of basic blocks. As
an outcome of micro-architectural modeling, we obtain the
WCET of each basic block in the examined program. On
the other hand, path analysis uses the WCET of each basic
block as input and searches for the longest feasible program
path. Our baseline implementation employs the separated
cache and path analysis as proposed in [6]. [6] uses abstract
interpretation (AI) for cache analysis and integer linear pro-
gramming (ILP) for path analysis. We assume least recently
used (LRU) cache replacement policy. We implement must
and may cache analysis to classify memory blocks as all-hit
(AH) and all-miss (AM) respectively. Must analysis is used
along with virtual inline and virtual unrolling (VIVU) as
discussed in [6]. In VIVU approach, each loop is unrolled
once to distinguish the cold cache misses at first iteration
of the loop. AH categorized memory blocks are always in
cache when accessed. On the other hand, AM categorized
memory blocks are never in cache when accessed. If a
memory block cannot be classified as either of two (AH
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or AM), it is considered unclassified (NC). Cache analysis
outcome is used for computing the WCET of each basic
block. Finally, longest path search in a program is formulated
as an integer linear program. The formulated ILP uses the
basic block WCETs and structural constraints imposed by
program control flow graph (CFG). Infeasible program path
informations are also encoded as separate ILP constraints
using the technique explored in [18]. The solution of the
formulated ILP returns the whole program WCET.

Inter-task cache conflict analysis: Inter-task cache con-
flict analysis is required to find an upper bound on cache
misses due to preemption. The bound on cache misses
(or additional clock cycles) due to preemption is called
cache related preemption delay (CRPD). CRPD analysis
revolves around the notion of two basic concepts: useful
cache blocks (UCB) and evicting cache blocks (ECB). UCBs
are computed by analyzing the preempted task and ECBs
are computed by analyzing the preempting task. A UCB is
a block that may be cached before preemption and may
be used later, resulting in a cache hit in the absence of
preemption. The number of UCBs imposes a bound on
CRPD. On the other hand, the preempting task can cause
additional cache misses in a cache set only if it uses the
same cache set during its execution. For a particular cache
set, the set of cache blocks used by the preempting task
during its execution is known as ECB for the corresponding
cache set. ECBs are used to check whether a particular
UCB could be evicted by the preempting task. We can
disregard all UCBs from CRPD computation if they could
not be evicted by the set of computed ECBs. Therefore,
a combined analysis with UCB and ECB may tighten the
CRPD estimates obtained with UCB alone [8]. Recently, two
approaches ([10] and [11]) have improved and generalized
the state-of-the-art CRPD estimation framework ([7], [8]) for
set associative caches. We implement both the techniques
proposed in [10] and [11] in our baseline CRPD estimation
framework. Therefore, our baseline implementation captures
the current state-of-the-art AI-based CRPD analysis.

Inter-core cache conflict analysis: Inter-core cache
conflict analysis computes the conflicts generated in shared
cache. Conflicts in shared cache, on the other hand, are
generated by the tasks running on different cores. Till now,
only a few solutions have been proposed for analyzing
timing behaviors of shared cache [12], [14], [13]. However,
all of them suffer from over-estimating the inter-core cache
conflicts. We use our former work on shared cache anal-
ysis [12], which employs a separate shared cache conflict
analysis phase. Shared cache conflict analysis may change
the categorization of a memory block m from all-hit (AH)
to unclassified (NC). This analysis phase first computes the
number of unique conflicting shared cache accesses from
different cores. Then it is checked whether the number of
conflicts from different cores can potentially replace m from
shared cache. More precisely, cache hit/miss categorization
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Figure 1. General framework of our WCET analysis which combines
abstract interpretation and model checking

(CHMC) of m is changed from all-hit (AH) to unclassified
(NC) if and only if the following condition holds:

N − age(m) < |Mc(m)| (1)

where |Mc(m)| represents the number of conflicting mem-
ory blocks from different cores which may potentially access
the same L2 cache set as m. N represents the associativity of
shared L2 cache and age(m) represents the age of memory
block m in shared L2 cache set in the absence of inter-core
conflicts. Therefore, N −age(m) specifically represents the
amount of shift that memory block m can tolerate before
being replaced from the cache. We call the term N−age(m)
as residual age of m.

IV. ANALYSIS FRAMEWORK

A. General framework

Figure 1 demonstrates the general analysis framework.
Our goal is to refine different types of abstract interpretation
(AI) based cache analysis through model checking (MC).
Cold cache misses are unavoidable and AI based cache
analysis can accurately predict the set of cold cache misses.
However, AI based cache analysis suffers from overesti-
mating the conflict misses in a cache. On the other hand,
conflicts in a particular cache set may come from different
sources. We focus on all three types of conflicts which may
arise in a cache: first, intra-task cache conflicts which is
created by different memory blocks accessed by a particular
task and mapping into the same cache set. Secondly, inter-
task cache conflicts which is created when a high priority
task preempts a low priority task. Finally, inter-core cache
conflicts which is generated in the shared cache by a task
running on a different core. Figure 2 pictorially represents
all forms of above mentioned cache conflicts.

Even though the basic goal of our framework is cache
conflict refinement, the notion of cache conflict may vary
depending on the outcome of AI based cache analysis.
For example, in inter-task cache conflict refinement, initial
CRPD analysis produces a set of ECBs, which can be
considered as the set of cache conflicts. On the other hand,
during intra-task and inter-core cache conflict refinement,
we get the cache hit miss classification (AH, AM or NC) of
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each memory block. A memory block might be categorized
as NC due to its conflicts with more than one memory block.
Therefore, by refining one NC categorized memory block
into AH, we may reduce more than one cache conflict pairs,
which may in turn result in an improvement of WCET.

In Figure 1, the dotted boxed portion has different imple-
mentations for refining different types of cache conflicts (i.e.
intra-task, inter-task and inter-core). The refinement of cache
conflicts is iteratively performed through model checking
on a modified program. We rule out the cache accesses
for which AI has generated precise information. Therefore,
the model checker refinement phase works on a very small
subset of all cache accesses. The iterative refinement through
model checking eliminates several infeasible paths from
the candidate program, resulting in the removal of several
unnecessary conflicts generated in a particular cache set. The
iterative refinement is continued as long as the time budget
permits or all possible refinements have been performed by
MC. Recall that the WCET analysis process can broadly be
categorized into two phases: micro-architectural modeling
and path analysis. The infeasible path exploration by the
model checker is only performed for refining cache conflicts
(i.e. during the micro-architectural modeling phase). For
path analysis, our framework encodes the infeasible path
informations as separate ILP constraints (for details, refer
to [18]). Infeasible path constraints are finally used in
the global ILP formulation for computing WCET. There
are two important advantages of our framework: first, the
iterative MC refinement can be terminated at any point if
the time budget exceeds. The resulting cache conflicts, after
a partial refinement, can safely be used for estimating the
WCET or CRPD. Secondly, our framework can be composed
with other micro-architectural features (e.g. pipeline, branch
prediction) and thereby, not affecting the flexibility of AI-
based cache analysis.

A general code transformation framework: Any code
transformation for refining various cache conflicts can be
represented by a quintuple < L,A,Pl,Pc, I > as follows:
• L : Set of conflicting memory blocks in the cache set

for which the refinement is being made.
• A : The property which need be checked by the

model checker. The property is placed in form of an
“assertion” clause, which validates A for all possible
execution traces of the modified code.

• Pl : Set of positions in the code where the conflict count
would be incremented. These are the set of positions
where some memory block in L might be accessed.

• Pc : Position in the code where property A would be
placed.

• I : Set of positions in the code to reset conflict count.
Recall that we consider LRU cache replacement policy.
A memory block m becomes the most recently used
immediately after it is accessed. Therefore, if we are
counting cache conflicts with m, the conflict count must
be reset after m is accessed.

Any model checker refinement pass corresponds to a specific
cache set and therefore, conflicts are defined for a specific
cache set in each code transformation. Consequently, compu-
tation of L and Pl depends only on the cache set for which
the conflicts are being refined. On the other hand, A, Pc

and I depends on the type of cache conflict (i.e. intra-task,
inter-task or inter-core) being refined.

In subsequent sections, we shall describe the instantiation
of the framework in Figure 1 for refining different versions
of cache conflicts (as shown in Figure 2). We shall also show
how A, Pc and I are configured depending on the type of
cache conflict being refined.

V. REFINEMENT OF INTRA-TASK CACHE CONFLICTS

In this section we describe the refinement of cache con-
flicts shown in Figure 2(a). Recall that the memory blocks
are classified as AH (all-hit), AM (all-miss) or NC (unclas-
sified) by [6]. AH and AM are guaranteed categorizations by
AI based cache analysis. Therefore, AH and AM categorized
memory blocks do not have any scope for refinement. On the
other hand, AI based cache analysis fails to give guaranteed
information (in this case cache hit or cache miss) for NC
categorized memory blocks. Consequently, we use the model
checker to refine the set of NC categorized memory blocks.

NC categorized
memory blocks
inside some loop

Refinement

by model checker

categorization

Modify hit-miss

Refinement success
Timeout

Refinement failure

All refinements
done

< L,A,Pl,Pc, I >

Figure 4. Refinement of intra-task conflict analysis

Figure 4 demonstrates the instantiation of our general
framework for reducing the over-estimation in intra-core
WCET analysis. As shown in Figure 4, we only target the
NC categorized memory blocks inside some loop. There-
fore, we concentrate only on a few memory blocks whose
successful refinement may lead to a reasonable WCET im-
provement. For each of the NC categorized memory blocks
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under consideration, we call our general code transformation
framework (as shown in Figure 4). Let us assume that we
want to refine the categorization of a particular memory
reference m mapping to a cache set i. m becomes the most
recently used cache block immediately after it is accessed.
We would like to check whether m could be evicted from
the cache between any two of its consecutive references. Let
us assume Ci counts the number of unique conflicts in cache
set i and N is the associativity of the cache. Since we use
LRU cache replacement policy, it would require at least N
unique conflicts to replace m (from cache set i) after m is
referenced. Therefore, if Ci is less than or equal to N − 1,
we can guarantee that m cannot be evicted from the cache.
The model checker is used to check an “assertion” property
Ci ≤ N − 1 just before m is referenced. More over, as m
is the most recently used cache block immediately after it
is accessed, we need to reset the conflict count Ci after m
is referenced.

We demonstrate our technique through an example in
Figure 3(a). Parameter z can be considered as a user input.
Corresponding control flow graph (CFG) of the loop body
and the accessed memory blocks are shown in Figure 3(b).
For illustration purposes, assume a direct-mapped L1 cache
where m1 and m5 are mapped to the same cache set and
rest of the memory blocks do not conflict in L1 cache with
m1 or m5. A correct AI-based cache analysis will classify
both m1 and m5 accesses as NC. Figure 3(c) shows the
transformation to refine the NC categorization of m1. Since
the cache is direct mapped, the refinement of m1 is possible
only if there are no other conflicting cache accesses between
any two consecutive accesses of m1. Variable C 1 serves
the purpose of counting the number of conflicts. Since m5
is the only conflicting memory block, C 1 is incremented

before the access of m5. Increment of C 1 is guarded by
condition (flag m5 serves the purpose of guard), so that we
count only unique cache conflicts. The above transformation
of code is fully automated and we pass the transformed
code to a software model checker. As m1-m3-m5 is an
infeasible path (due to the conflicting conditions z ≥ 0 and
z = −2), a software model checker satisfies the assertion
clause “P1” in Figure 3(c). Therefore, we conclude that m1
cannot be evicted from cache. Similarly, using a separate
model checker refinement pass, we can also conclude that
m5 cannot be evicted from cache. As marked in Figure 3(c),
our code transformation framework < L,A,Pl,Pc, I > is
configured as follows: L = {m5}, A is the “assertion”
clause checking the property C 1 ≤ 0, Pl = {L2},
Pc = {P1} and I = {I1, I2}.

VI. REFINEMENT OF INTER-TASK CACHE CONFLICTS

We now show the refinement of inter-task cache conflicts
(as shown in Figure 3(b)) and thereby reduce the over-
estimation introduced by CRPD analysis. A major source
of over-estimation in CRPD analysis may come from the
computation of evicting cache blocks (ECB). ECB denotes
the set of cache blocks possibly touched by the preempting
task. Recall that CRPD depends on the set of useful cache
blocks (UCBs) replaced from cache due to preemption.
Whether a UCB could be replaced due to preemption, on
the other hand, depends on the set of ECBs conflicting with
it. Therefore, more precise the set of ECBs, more precise
the CRPD we get. If ECB computation does not take into
account the infeasible paths in preempting task, set of ECBs
might be over-approximated. Therefore, over-estimation in
CRPD analysis will also increase. Consequently, we use
a model checker for refining the number of ECBs by
eliminating infeasible paths found in the preempting task.
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Figure 5. Refinement of inter-task conflict analysis

The refinement of ECBs can be represented in Figure
5. Let us assume ECB(i) represents the number of ECBs
computed for cache set i and Ci counts the unique conflicts
(in our transformed code) in cache set i generated by the
preempting task . The refinement of ECBs are performed
in an iterative manner. In each iteration, for all non-zero
ECB(i), we try to refine ECB(i) with an immediately
smaller value. More precisely, if ECB(i) = N , we use the
model checker to verify an “assertion” property Ci ≤ N−1.
Note that we need to count the cache conflicts generated by
the entire preempting task. Therefore, the conflict count Ci

need to be initialized only once, before any cache blocks
accessed by the preempting task and the “assertion” property
Ci ≤ N − 1 is placed immediately before the exit point
of the preempting task. If the model checker successfully
verifies the “assertion” property Ci ≤ N − 1, we can
guarantee that the preempting task cannot generate more
than N−1 conflicts in cache set i. Therefore, we can update
ECB(i) with N−1. After each iteration (i.e. after checking
refinement of ECB(i) with an immediately smaller value
for all cache set i), we re-evaluate the CRPD.

The workflow of refinement, as shown in Figure 5, is
not restrictive. More specifically, CRPD need not be evalu-
ated after each iteration. The designer may choose to wait
for all possible refinements and evaluate the CRPD once
all refinements by the MC has been completed. However,
evaluation of CRPD after each iteration gives the designer
two advantages: first, (s)he can choose to terminate the MC
refinement process when a tolerable value of CRPD has been
obtained and secondly, (s)he can choose to terminate the
MC refinement process if the value of CRPD has not been
changed for a reasonably long number of iterations.

We again demonstrate the idea using our example in
Figure 3(a). Suppose, the task in Figure 3(a) is a high priority
task which may potentially preempt some low priority task.
For sake of illustration, assume a 2-way set associative cache
where m1 and m5 map to the same cache set i. Therefore,
ECB(i) = 2 and the immediate refinement of ECB(i)
would check whether the number of unique conflicts in cache

set i is less than or equal to 1. The transformed code is
shown in Figure 3(e). It checks a property C 1 ≤ 1 where
C 1 counts the number of unique conflicts generated by the
preempting task in cache set i. flag m1 and flag m5 are
used as guards, so that C 1 counts only unique cache con-
flicts. When the modified code is passed to a software model
checker, it can find out the infeasible path m1-m3-m5 and
satisfy the property (i.e. C 1 ≤ 1). Consequently, we can
refine the value of ECB(i) as 1. Since ECB(i) is refined to
a smaller value, some UCBs in the preempted task may not
be evicted from cache set i after preemption, which might
in turn lead to a smaller CRPD. As marked in Figure 3(e),
our code transformation framework < L,A,Pl,Pc, I > is
configured as follows: L = {m1, m5}, Pl = {L1, L2}, A
is the the property C 1 ≤ 1, Pc = {P2} and I = {I1}.

VII. REFINEMENT OF INTER-CORE CACHE CONFLICTS

Finally, we describe the refinement of inter-core conflicts
generated in a shared cache (as shown in Figure 2(c)).
Recall from Equation 1 that the precision of shared L2 cache
analysis largely depends on the accuracy of estimating the
term |Mc(m)|. The model checking pass in our framework
refines the set Mc(m) by exploiting infeasible paths in the
conflicting task.

Memory blocks inside
a loop that are changed
from AH to NC in shared
cache conflict analysis

Modify categorization

from NC to AH

Refinement failure

All refinements
done

Timeout

Refinement
success

model checker

Refinement by
< L,A,Pl,Pc, I >

Figure 6. Refinement of shared cache conflict analysis

Figure 6 demonstrates the instantiation of our general
framework for inter-core conflict refinement. We only target
the memory blocks whose categorizations are changed from
AH to NC in a shared cache conflict analysis phase. Consider
such a memory block m mapping to an N -way associative
shared L2 cache set i. Disregarding the inter-core conflicts,
assume the maximum LRU age of m in cache set i is
denoted by age(m). Therefore, if the amount of inter-core
conflicts (in cache set i) is bounded by N − age(m), we
can guarantee that m will remain a shared L2 cache hit,
despite inter-core conflicts. Recall that N−age(m) is called
the residual age of m. Further assume tc is a task which
may generate inter-core cache conflicts and Ci serves the
purpose of counting inter-core conflicts in shared L2 cache
set i generated by tc. Therefore, we use the model checker to
verify an “assertion” property Ci ≤ N − age(m). Identical
to inter-task cache conflict refinement, we need to check
the total amount of cache conflicts generated by task tc.
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Therefore, in our transformed code, we initialize Ci only
once, before any cache blocks accessed by tc and we check
the “assertion” property just before the exit point of tc.

Coming back to the example in Figure 3(a), assume that
m1 and m5 map to the same cache set of a 2-way set
associative L2 cache. Further assume that we are trying to
refine the shared cache conflict analysis of a task shown
in Figure 3(d). The task in Figure 3(d) accesses a memory
block m′ mapping to the same cache set as m1 (or m5) in
shared L2 cache and it is run parallely on a different core
with the task in Figure 3(a). Finally assume, m′ is an all-hit
(AH) in L2 cache with residual age one but an all-miss (AM)
or unclassified (NC) in L1 cache from the second iteration
of the loop. Previous analysis will compute |Mc(m′)| as 2
(due to m1 and m5 in the conflicting task). Since the residual
age of m′ is one, the categorization of m′ will be changed
to NC (Equation 1), leading to unnecessary conflict misses.
We modify the code to check whether the number of unique
inter-core conflicts is less than or equal to the residual age of
m′. The transformation is similar to Figure 3(e) where C 1
serves the purpose of counting unique cache conflicts with
m′ in shared L2 cache. The model checker will satisfy the
assertion P2 in Figure 3(e) due to the infeasible path m1-m3-
m5. Consequently, we shall be able to derive that the amount
of inter-core conflicts with m′ never exceeds the residual
age of m′. Therefore, the categorization of m′ is kept all-hit
(AH) from the second iteration of the loop. Configuration
of our code transformation framework < L,A,Pl,Pc, I >
is identical to the inter-task cache conflict refinement as fol-
lows: L = {m1, m5}, Pl = {L1, L2}, A is the “assertion”
clause checking the property C 1 ≤ 1, Pc = {P2} and
I = {I1}.

Although we show the transformation for a two core
system, our framework does not have the strict limitation of
working only for two cores. However, one model checker
invocation can verify only one task. Therefore, to refine
conflicts from X different tasks t1, t2, . . . , tX running on
X different cores, we first employ an additional compose
phase in transformation. The compose phase sequentially
composes t1, t2, . . . , tX (in any order) into a single task T .
The infeasible paths in any task t1, t2, . . . , tX are preserved
in task T . Consequently, our code transformation technique
can be applied to T in exactly same manner as described
in the preceding to refine conflicts from t1, t2, . . . , tX .
Since the composition is sequential, number of conflicts are
accumulated from all X cores. Model checker refinement
passes can then be carried out on task T .

VIII. OPTIMIZATIONS

To reduce the number of calls to model checker, we cache
the verification results. Recall that the “assertion” property
verified by the model checker was always placed at the
end of conflicting task during inter-task and inter-core cache
conflict refinement. However, during intra-task cache conflict

refinement, the position of “assertion” property may vary
and depends on the position of NC categorized memory
block being refined. Therefore, the following optimization
can be applied only during inter-task and inter-core conflict
refinement but not during intra-task conflict refinement.

Model checker results are stored as a triple
(set, resultmc, conflicts). The triple has the following
meaning:
• set : Cache set for which the refinement is being made.
• resultmc : Returned result by the model checker.

Assume resultmc is one for a successful verification
and zero otherwise.

• conflicts : Number of conflicts in the assertion prop-
erty. If we verify an assertion property Ci ≤ N , value
of conflicts is N .

In Figure 3(e), we store (1, 1, 1) after the successful refine-
ment (assuming m1 and m5 map to cache set 1). Assume
any other assertion of form Cset′ ≤ N ′ is needed to be
verified, where set′ is the cache set for which the conflicts
are being refined. We search the cached results of form
(set, resultmc, conflicts) and take an action as follows:
• set = set′∧resultmc = 0∧N ′ ≥ conflicts: Assertion

failure is returned. If the refinement previously failed
for a less number of conflicts, it will definitely fail for
more conflicts.

• set = set′ ∧ resultmc = 1 ∧ N ′ ≤ conflicts:
Assertion success is returned. If the refinement was
previously satisfied for more number of conflicts, it
must be satisfied for less number of conflicts.

If none of the entries satisfy the above two conditions, a
new call to the model checker is made. Depending on the
outcome, the new result is cached accordingly for future use.

IX. IMPLEMENTATION

We have used the Chronos timing analysis tool [2] in
which we have already integrated the AI based cache anal-
ysis proposed in [6] (for single core) and [12] (for multiple
cores). Chronos employs detailed micro-architectural mod-
eling (superscalar, out-of-order pipeline and branch predic-
tion). We have also integrated the recently proposed CRPD
analysis ([11] and [10]) into Chronos.

For model checking purposes, we use C bounded model
checker (CBMC) [19]. CBMC formally verifies ANSI-C
programs through bounded model checking (BMC) [20]. For
a given system/program P , BMC unwinds P to a certain
depth. After unwinding, a Boolean formula is obtained that
is satisfiable if and only if there exists a counter example
trace. The formula is checked by a SAT procedure. If the
formula is satisfiable, a counter example is produced from
the output of SAT procedure. Technically, for a C program,
the unwinding is achieved by unrolling the program loops
to a certain depth. For a given unwinding depth n, CBMC
unwinds a loop by duplicating the code of loop body n
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Figure 7. Implementation framework

times. Each copy is guarded by the loop entry condition
and hence, covering the cases where the loop executes for
less than n iterations. The main advantage of CBMC is that
the tool also checks whether sufficient unwinding has been
done and thereby ensures that no longer counterexample can
exist. Technically, CBMC achieves the same by putting an
“assertion” (called unwinding assertion) after the last copy
of the unrolled loop. The assertion uses the negated loop en-
try condition and therefore, it ensures that the program never
requires more iterations. In summary, if no counterexample
is produced by CBMC, it ensures the absence of error in the
program for any execution.

As described in the preceding, CBMC requires unwinding
depth (bound) of each loop. If user does not specify any
unwinding depth (loop bound), CBMC tries to determine
the depth automatically. In most of our experiments, CBMC
was able to determine the loop bound automatically. For the
cases where CBMC failed to determine the loop bound, we
passed sufficient loop bound for each loop as an input to
CBMC. Recall that CBMC automatically put an “assertion”
clause (called an unwinding assertion) after the last unwound
copy of a loop. The assertion clause verifies the negated
loop entry condition. Therefore, if insufficient loop bound is
provided by the user, CBMC generates an unwinding asser-
tion violation and the verification process returns a failure.
Consequently, user can give a larger loop bound and rerun
CBMC. However, in our experiments, we initially provided
sufficient loop bounds, so that no unwinding assertion is
violated. In our current implementation, CBMC is called
as an external module. Therefore, for each different call of
CBMC, the loop unwinding needs to be performed. Running
time of our analysis can certainly improve if we can restrict
the number of loop unwindings. This will require us to make
use of CBMC and Chronos in a single binary executable,
which could be explored in future.

Figure 7 gives an overall picture of our implementation
framework. The figure demonstrates one refinement for each
type of conflicts. Chronos employs AI based cache analysis
directly on the executable. We use a utility addr2line
which converts an instruction address to corresponding
source code line number. The information generated by
addr2line is used to generate the transformed code.
The transformation of code is entirely automatic. Note that
the sole purpose of the transformed code is to prove that
certain cache conflicts in the original code are infeasible.
Therefore, the timing effects generated by the original code
is entirely independent of the additional code introduced
in transformation. The transformed code contains an “as-
sertion” property to be verified by CBMC. CBMC either
successfully verifies the assertion property or generates a
counter example. We would finally like to point out that the
central contribution of this paper is an efficient composition
of abstract interpretation and model checking. Therefore,
even though we have used CBMC for model checking, our
proposed framework (Figure 1) remains unchanged if we use
a model checker that directly works on the executable (e.g.
[21]). Nevertheless, there are certain advantages of using
a model checker like [21]. Since [21] directly works on
the executables, it can capture the effect of all compiler
optimizations. Our technique can be integrated with [21] to
make a more robust WCET analysis framework.

X. EXPERIMENTAL EVALUATION

We have chosen benchmarks from [4] which are generally
used for timing analysis. Note that the main motivation of
our work is to remove false cache conflicts, which were
introduced due to the infeasible paths. Infeasible paths are
often introduced when auto generating code from a high
level modeling language (e.g. esterel as shown in [18]).
For evaluation of our framework, therefore, we need a
set of tasks which potentially exhibit many paths. Table I
demonstrates a set of benchmarks having multiple paths.
Let us call the set of tasks in Table I as conflicting task
set. Each task in the conflicting task set serves the purpose
of the task used in Figure 3(a). Therefore, model checker
refinement pass is used on the tasks from conflicting task
set. We use another set of selected benchmarks from [4] as
shown in Table II during inter-task and inter-core conflict
refinement. We call the tasks in Table II as standard task
set. During inter-task and inter-core conflict refinement, we
refine the conflicts generated by conflicting task set on
the standard task set. We report our experiences for each
possible combinations of standard and conflicting task set.

Task Description code size (bytes)
statemate Automatically generated code 52618

from Real-time-Code generator STARC
compress Data compression program 13411
nsichneu Simulate an extended petri-net 118351

Table I
CONFLICTING TASK SET
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Task Description code size (bytes)
cnt Counts non-negative numbers in a matrix 2880
fir Finite impulse response filter 11965

fdct Fast discrete cosign transform 8863
jfdcint discrete cosign transform on 8× 8 block 16028

edn signal processing application 10563
ndes complex embedded code 7345

Table II
STANDARD TASK SET
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We use the following terminology in presenting the ex-
perimental data: i) WCETbase : WCET before any re-
finement by model checker. ii) WCETrefined : WCET
after refinement by model checker. iii) CRPDbase : CRPD
before any refinement by model checker. iv) CRPDrefined :
CRPD after refinement by model checker. WCET im-
provement is computed as WCETbase−WCETrefined

WCETbase
×

100%. CRPD improvement is computed similarly as
CRPDbase−CRPDrefined

CRPDbase
× 100%.

Our framework uses the usual 5-stage pipeline (IF-ID-
EX-MEM-WB) implemented by Chronos when predicting
the WCET value. The experimental data are taken for an
inorder pipeline. However, the data can also be obtained
for an out-of-order pipeline in exactly same manner. We
fix the L1 cache miss latency as 6 cycles and L2 cache
miss latency as 30 cycles for all the experiments. For the
experiments which do not have an L2 cache (e.g. inter-task
and intra-task conflict refinement), we simply take the L1
cache miss penalty as 36 cycles. All reported experiments
have been performed in an Intel core-2 duo machine having
2 GB of RAM and running ubuntu 10.10 operating systems.
The reported total time captures the entire time taken during
analysis — including the base analysis through abstract
interpretation and repeated model checking steps.

Key result: Before going to the details of each experi-
ment, let us first demonstrate the key result of this paper via
Figure 8. Figure 8 shows the improvement of WCET and
CRPD with respect to wall clock time using statemate. The
improvement of WCET is demonstrated in case of intra-task
and inter-core cache conflict refinement. On the other hand,
CRPD improvement is shown for inter-task cache conflict
refinement. We observe that intra-task and inter-core cache
conflict refinement demonstrates an almost linear improve-
ment in timing precision (i.e. improvement in WCET) with

respect to time. On the other hand, CRPD improvement
shows a step-wise behaviour. Recall from Section VI that
we refine the set of evicting cache blocks in an iterative
manner. In our experiments, we observe that most of the
time CRPD is improved only after one complete iteration
of our inter-task cache conflict refinement. Therefore, the
steady portion of the graph (where CRPD is not improved)
demonstrates the time of one iteration in our inter-task cache
conflict refinement.

As our result is always safe, a provably correct
WCET/CRPD value can be obtained from any vertical cut
along the time axis of Figure 8. As illustrated in Figure
8, consider the cut at 100th second. It clearly shows that
if we end the model checker refinement process after 100
seconds, we can obtain 4%, 19% and 46% improvement
during intra-task, inter-task and inter-core cache conflict
refinement, respectively. Nevertheless, if the model checker
refinement process is allowed more time to run, we can
obtain better precision in our obtained result (8%, 27%
and 48% respectively for intra-task, inter-task and inter-core
conflict refinement after 150 seconds, as shown in Figure 8).

Reducing intra-task cache conflicts: Clearly, our re-
finement depends both on the choice of conflicting task set
and cache size. We choose a 4-way associative, 8 KB L1
cache with 32 bytes of block size. Applying intra-task cache
analysis on compress does not leave any NC categorized
memory blocks inside loop. Therefore, our refinement pass
using CBMC did not have any additional effect in improving
the WCET for compress. On the other hand, statemate and
nsichneu contain very large loops (in terms of code size)
with multiple paths inside a loop body. Consequently, AI
based cache analysis generates a large number of NC cat-
egorized memory blocks. The result obtained for statemate
and nsichneu is presented in Table III. As shown in Table III,
for both statemate and nsichneu, we are able to refine many
of the NC categorized memory blocks (e.g. 68 out of 100
calls return success when experimenting with statemate). We
show the refinement process for a maximum of 100 model
checker steps (as shown by the “MC steps” column in Table
III). Nevertheless, if time budget permits, the refinement
process can be run longer and thereby provides more op-
portunities to improve the WCET. This result demonstrates
the potential of our approach even for improving the most
basic cache conflict analysis through AI.

Reducing inter-task cache conflicts: We present the
result of inter-task conflict refinement in Table IV. CRPD
reported in Table IV (CRPDbase and CRPDrefined) de-
notes the cache related preemption delay when a low priority
task from standard task set is preempted by a high priority
task from conflicting task set. As before, we choose a 4-
way associative, 8 KB L1 cache with 32 bytes block size.
We are able to reduce the number of ECBs as well as the
CRPD when compress, statemate and nsichneu are used
as high priority tasks. CRPD improvement is significant,
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program NC inside loop NC refined WCETbase WCETrefined Improvement(%) MC steps time(secs)
(in cycles) (in cycles)

statemate 350 68 19188 14834 22.7% 100 395
nsichneu 697 98 91000 84174 7.5% 100 558

Table III
REFINEMENT OF INTRA-TASK CACHE CONFLICTS. We use a 4-way associative, 8 KB cache with 32 bytes block size.

program (low+high) ECB before ECB after refinement CRPDbase CRPDrefined Improvement(%) time (secs) MC calls
(in cycles) (in cycles)

cnt + statemate 128 105 1260 684 45.7% 145.69 27
fir + statemate 128 112 972 72 92.6% 123.73 19

fdct + statemate 128 103 1152 396 65.6% 181.6 32
jfdcint + statemate 128 103 1224 648 47.1% 182.8 32

edn + statemate 128 103 4464 2664 40.3% 187.34 32
ndes + statemate 128 103 2844 720 74.7% 193.5 32

cnt + nsichneu 256 217 1152 396 65.6% 390.58 52
fir + nsichneu 256 218 828 72 91.3% 304.96 34

fdct + nsichneu 256 147 612 36 94.1% 465.50 52
jfdcint + nsichneu 256 198 792 72 90.9% 554.26 46

edn + nsichneu 256 176 3492 144 95.9% 769.41 64
ndes + nsichneu 256 178 5328 108 98% 743.84 61

cnt + compress 107 82 432 0 100% 139.84 27
fir + compress 107 58 324 0 100% 137.51 19

fdct + compress 107 97 396 72 81.8% 144.35 32
jfdcint + compress 107 97 648 72 88.9% 144.58 32

edn + compress 107 97 2448 108 95.6% 148.29 32
ndes + compress 107 97 900 36 96% 152.25 32

Table IV
REFINEMENT OF INTER-TASK CACHE CONFLICTS. We use a 4-way associative, 8 KB cache with 32 bytes block size.

program set CHMC changed CHMC refined WCETbase WCETrefined Improvement(%) time (secs) MC calls
(in cycles) (in cycles)

cnt + statemate 29 7 212913 113313 46.8% 23.54 3
fir + statemate 27 10 478860 415800 13.2% 38.41 5

fdct + statemate 83 47 14124 7374 47.8% 90.21 27
jfdcint + statemate 114 69 193436 87386 54.8% 91.53 29

edn + statemate 204 127 204136 148276 27.4% 115.65 23
ndes + statemate 225 163 208392 97932 53% 93.44 29

cnt + nsichneu 16 7 211533 113133 46.5% 23.67 2
fir + nsichneu 15 7 457680 415650 9.2% 26.99 3

fdct + nsichneu 38 23 10344 7104 31.3% 99.17 13
jfdcint + nsichneu 45 26 123746 84356 31.8% 111.25 14

edn + nsichneu 73 46 116742 80592 31% 84.09 10
ndes + nsichneu 95 68 209442 112512 46.3% 99.81 15

cnt + compress 32 14 262083 113283 56.8% 15.61 4
fir + compress 19 6 467570 415710 11.1% 22.95 4

fdct + compress 86 47 14394 7644 46.9% 69.67 15
jfdcint + compress 108 58 196466 117686 40.1% 107.41 18

edn + compress 185 101 222166 166336 25.1% 126.55 18
ndes + compress 174 122 179832 103242 42.6% 114.81 15

Table V
REFINEMENT OF INTER-CORE CACHE CONFLICTS. We use a 4-way associative, 8 KB cache with 32 bytes block size.

with average improvement being more than 80%. Note
that we use a set associative cache. Therefore, conflicts
generated from high priority tasks may just age the used
cache blocks in the low priority tasks (instead of completely
evicting the used cache blocks by the low priority task).
Consequently, for (cnt,compress) and (fir,compress) pair, we
are able to completely eliminate the CRPD. More over, we
refine evicting cache blocks in cache set i only if the low
priority task has used the cache set i. Therefore, even for
the same preempting task, Table IV might have different
number of evicting cache blocks refined (as shown in the
column “ECB after refinement”).

Unlike the intra-task conflict refinement, results reported
in Table IV run the refinement process till end (i.e. unless
all possible refinements have been checked). Corresponding
number of CBMC calls is shown in the column “MC calls”.

Reducing inter-core cache conflicts: Finally, we present
the result of inter-core cache conflict refinement in Table V.
In one core, we run a task from the standard task set (in Table
II) and in another core, we run a task from the conflicting
task set (in Table I). Reported WCETs represent the WCETs
of tasks from the standard task set. For experiments reported
in Table V, we need the analysis of both L1 and L2
cache. We fixed the L1 cache as a direct-mapped, 256
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bytes with a block size of 32 bytes. L1 cache is taken
relatively small so that we are able to generate reasonable
number of conflicts in the shared L2 cache. We take a 4-
way associative, 8 KB shared L2 cache having a cache block
size of 32 bytes. As expected, we are able to significantly
reduce the standard task WCET by refining the inter-core
cache conflicts (maximum improvement upto 57%). All our
experiments complete within two minutes with maximum
number of model checker calls being only 29 (as shown by
the column “MC calls”).

XI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a scalable WCET analysis
framework using the combination of abstract interpretation
and model checking for cache analysis. Our framework does
not affect the flexibility of abstract interpretation based cache
analysis and it can be composed with the analysis of differ-
ent other micro-architectural features (e.g. pipeline). More
over, our model checker refinement process is always safe.
Therefore, the model checker refinement can be terminated
at any point if the time budget is violated. Experimental
results show that we can obtain significant improvement for
various types of cache analysis in single and multi-cores.

Our current work can be extended in several direc-
tions: first, our framework currently handles LRU cache
replacement policy. It could be extended to deal with other
cache replacement policies (e.g. FIFO, pseudo-LRU etc).
Nevertheless, this would require to change the base analysis
(using abstract interpretation) and the code transformation
technique to target the corresponding cache replacement
policy. Secondly, we capture the global persistence of a
memory block during intra-core cache conflict refinement.
Therefore, a successful model checker refinement ensures
that the corresponding memory block can never be evicted
from the cache during program execution. Our code trans-
formation technique can be extended to capture scope based
persistence information. In scope based analysis, a memory
block may exhibit different persistence behaviours in dif-
ferent loop nests (refer to [22]). Finally, using the scope
based refinement technique, our framework can be extended
for refining data cache analysis result. In future, we plan to
investigate the refinement of data cache analysis outcome
through model checking.
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