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Abstract—Hard real-time systems are required to meet critical
deadlines. Worst case execution time (WCET) is therefore an im-
portant metric for the system level schedulability analysis of hard
real-time systems. However, performance enhancing features of
a processor (e.g. pipeline, caches) makes WCET analysis a very
difficult problem. In this paper, we propose a novel approach
to combine abstract interpretation (AI) and satisfiability (SAT)
checking (hence the name AI+SAT) for different varieties of
micro-architectural modeling. Our work in this paper is inspired
by the research advances in program flow analysis(e.g. infeasible
path analysis). We show that the accuracy of WCET estimates
can be improved in a scalable fashion by using SAT checkers to
integrate infeasible path analysis results into micro-architectural
modeling. Our modeling is implemented on top of the Chronos
WCET analysis tool and we improve the accuracy of WCET
estimates for instruction cache, data cache, branch predictors
and shared caches.

I. INTRODUCTION

Real-time embedded software are required to satisfy some

extra-functional properties, such as timing. For hard real-time

systems, such timing guarantees must be known in advance.

An erroneous timing guarantee for hard real-time systems

may lead to serious consequences. As a result, worst-case

execution time (WCET) analysis has emerged to be one of

the critical problems to address for hard real-time systems.

Since the execution time is highly sensitive to the underlying

hardware platform, WCET analysis typically involves three

different phases: micro-architectural modeling (which analyzes

the timing effects of underlying micro-architecture), program

flow analysis (which computes the infeasible paths and loop

bounds of a program) and WCET calculation (which combines

the results of micro-architectural modeling and program flow

analysis to derive the whole program WCET).

Micro-architectural modeling systematically considers the

timing effects of underlying hardware platform (e.g. pipeline,

caches, branch predictors) and it produces the WCET of each

basic block in the program control flow graph (CFG). On the

other hand, program flow analysis usually involves finding

infeasible program paths in the CFG. Such infeasible program

paths are ignored during WCET calculation phase to produce

a tighter WCET estimate. This WCET analysis process is

shown in Figure 1. A crucial observation from Figure 1 is that

the micro-architectural modeling and program flow analysis

are performed independently. As a result, the information

computed by program flow analysis is typically not used by

the micro-architectural modeling. In the absence of program
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Fig. 1: A typical WCET analysis framework

flow information, micro-architectural modeling involves con-

sidering many infeasible micro-architectural states, which may

lead to the imprecision in WCET estimate for each basic block.

A typical example of such infeasible micro-architectural state

would be the set of memory blocks inserted into the cache

along some infeasible program path. With the help of some

program flow information (which is already computed during

the program flow analysis), such infeasible micro-architectural

states can be ignored, which in turn will lead to a tighter

WCET of each basic block after the micro-architectural mod-

eling. As a result, the integration of program flow information

into micro-architectural modeling may lead to a tighter WCET

estimate of the overall program. The main novelty of our

work lies in the consideration of infeasible program paths

(computed by program flow analysis) into micro-architectural

modeling. Therefore, our work in this paper establishes the

missing link (in Figure 1) between program flow analysis and

micro-architectural modeling.

However, considering program flow information into micro-

architectural modeling leads to several technical challenges.

A naive strategy is to employ fully path sensitive micro-

architectural modeling. Such an approach will be infeasible

in practice due to the classic state-space explosion problem

[24]. Therefore, micro-architectural modeling for real-time

systems is usually accomplished by abstract interpretation.

Abstract interpretation is usually efficient but often imprecise.

This happens due to the “join” of several micro-architectural

states at control flow merge points, which may eventually lead

to several infeasible micro-architectural states (e.g. infeasible

cache contents for cache analysis). However, due to this “join”

operation, abstract interpretation is path insensitive, which in

turn leads to its scalability.

In this paper, we propose a generic extension to abstract in-

terpretation (AI) based analysis framework using satisfiability

(SAT) checking. Our baseline analysis is abstract interpreta-
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Fig. 2: Illustrative example (a) program control flow graph with accessed memory blocks shown inside each basic block. The

branch conditions are shown beside the respective control flow edges, (b) original must cache analysis, (c) must cache analysis

instantiated by our proposed framework

tion. At any program point, our proposed framework tracks a

partial path with each micro-architectural state µ. This partial

path captures a subset of all the control flow edges along

which the micro-architectural state µ has been propagated.

We define the partial path as a propositional logic formula

ϕ over the propositions associated with each control flow

edge. At each control flow branch (i.e. conditional statements),

this partial path formula ϕ is sent to an oracle. The oracle,

in turn, is generated after program flow analysis and checks

the infeasibility of the partial path (defined by ϕ). Such a

checking can be accomplished by making an on-the-fly call to

a satisfiability solver (e.g. using Minisat [2]). If the partial path

was infeasible, its associated micro-architectural state can be

ignored for further consideration. Due to a significant progress

in SAT solver technologies for the past few decades, such calls

to SAT solvers can be processed very efficiently.

The set of micro-architectural states generated by our frame-

work is always tractable. To control the number of micro-

architectural states, we employ strategies to merge different

micro-architectural states at appropriate program points. The

growth in the number of micro-architectural states (compared

to the original abstract interpretation based framework) is

always bounded by a magnitude equal to the incoming degree

of a control flow node, typically a small number. Therefore,

we provide a comprehensive and tractable strategy to integrate

program flow analysis into micro-architectural modeling.

Contributions: In summary, this paper presents a generic

micro-architectural modeling framework using abstract inter-

pretation and satisfiability (SAT) solvers. Such a framework

leverages the progress in program flow analysis research for

precise micro-architectural modeling. We show that our frame-

work can be instantiated for the modeling of several micro-

architectural entities – i) instruction caches, ii) data caches,

iii) branch target buffers, and iv) shared instruction caches.

We have implemented our framework using Chronos [14], an

open source, freely available WCET analysis tool and Minisat

[2], an open source, freely available satisfiability (SAT) solver.

Our experiments with several open source subject programs

suggest substantial improvements in the accuracy of WCET

analysis. This makes the idea of integrating program flow

analysis into micro-architectural modeling quite appealing for

research in future.

II. OVERVIEW

In this section, we shall illustrate the central idea behind our

approach through a simple example. Through the example,

we shall show how the precision of cache analysis can be

improved using our proposed framework.

Figure 2(a) shows the control flow graph (CFG) of a

program. The label inside each basic block captures the

memory blocks accessed by the same basic block. The branch

condition is shown beside each conditional branches. For the

sake of illustration, let us assume that variable x (used in the

conditional branches) is not modified anywhere in the CFG.

Additionally, we assume a 2-way set associative cache, where

the memory blocks in the CFG are mapped to different cache

sets as follows: m1 7→ S1, m2 7→ S1, m3 7→ S1, m4 7→ S2,

m5 7→ S3, m6 7→ S4 and m7 7→ S7. Si captures the different

cache sets. Therefore, in our example, only the memory blocks

m1,m2 and m3 conflict in the cache.

Figure 2(b) shows the state-of-the-art must cache analysis

[23] for LRU replacement policy. Each element in the cache



state is represented as 〈m, a〉, where m is the memory block

with LRU age a. Let us see the propagation of abstract cache

states associated with memory block m1. Since m2 conflicts

with m1, the join operation at the first control flow merge

point computes 〈m1, 2〉 (by taking the must join of 〈m1, 2〉
and 〈m1, 1〉). Since m3 also conflicts with m1, the control

flow after accessing m3 will evict m1 from the abstract cache

state (captured by the element 〈m1,∞〉 in Figure 2(b)). As

a result, the join operation at the second control flow merge

computes 〈m1,∞〉. Therefore, must analysis cannot conclude

any subsequent accesses to m1 as cache hits.

However, careful examination reveals that x ≤ 0 and

x ≥ 6 cannot be satisfied for any execution (recall that

we assume x is not modified anywhere in the CFG). The

must cache analysis was unaware of this infeasible execution.

As a result, the traditional must cache analysis assumes two

cache conflicts to m1 (from m2 and m3), whereas at most

one cache conflict is possible for any feasible execution. To

summarize, in the absence of any program flow information,

abstract interpretation based cache analysis cannot determine

that accesses to memory block m1 are cache hits (excluding

the cold cache miss).

To resolve the gap between program flow analysis and

micro-architectural modeling, we propose to extend the ab-

stract domain of the micro-architectural state with partial path

information. The instantiation of our proposed framework for

cache analysis is shown in Figure 2(c). We first label the

control flow edges (as shown by e1, e2, e3 and e4 in Figure

2(c)) and define a predicate associated with each such labeling.

Let us assume prede captures the predicate associated with

label e. prede is true if and only if control flow edge e is

executed.

Program flow analysis can produce infeasible branch pairs

in a program (e.g. using [12], [22]). For our example, the

infeasible branch pairs (i.e. x < 0 and x ≥ 6) are captured by

the following formula:

Ψflow ≡ ¬prede1 ∨ ¬prede3 (1)

With the augmented abstract domain, our analysis now labels

the cache states with control flow information. Such a labeling

enables us to distinguish the control flow along which a single

cache state is propagated. As an example, in the beginning,

〈m1, 1, e1〉 and 〈m1, 1, e2〉 are propagated along control flow

edges e1 and e2, respectively.

The join operation at first control flow merge point keeps

both the elements (〈m1, 2, e1〉 and 〈m1, 1, e2〉) in the abstract

cache state since they come along different control flows e1
and e2. The crucial difference is, however, made at the branch

point x ≥ 6. Let us assume that we want to propagate the

cache state produced after the first join operation along the

control flow labelled e3. While propagating a cache state along

a branch edge, our framework checks the feasibility of the

cache state along the same branch. Therefore, when we try

to propagate 〈m1, 2, e1〉 along e3, we check the feasibility of

the state along e3 by consulting the information generated by

program flow analysis (i.e. Ψflow). We make a call to the SAT

solver to check the feasibility of the following formula:

ϕ ≡ Ψflow ∧ prede1 ∧ prede3

≡ (¬prede1 ∨ ¬prede3) ∧ prede1 ∧ prede3 (2)

This is due to the fact that the propagation of 〈m1, 2, e1〉
along e3 must execute both the control flow edges e1 and

e3, which in turn means that prede1 ∧ prede3 must be true.

Since the formula in Equation 2 is unsatisfiable, we do not

propagate the cache state 〈m1, 2, e1〉 along e3. On the other

hand, since Ψflow∧prede2∧prede3 is satisfiable, 〈m1, 1, e2〉 is

propagated along e3. Additionally, such a propagation of cache

state 〈m1, 1, e2〉 along e3 updates the control flow information

of the cache state from e2 to {e2, e3} (as shown by the

element 〈m1, 1, {e2, e3}〉 in Figure 2(c)). 〈m1, 1, {e2, e3}〉
now captures that the original cache state 〈m1, 1〉 has been

propagated through control flow edges {e2, e3}.

Now let us consider the branch edge labelled e4. We found

that both the formula Ψflow ∧ prede1 ∧ prede4 and Ψflow ∧
prede2∧prede4 are satisfiable. Therefore, both the cache states

〈m1, 2, e1〉 and 〈m1, 1, e2〉 are propagated along e4 and the

control flow information of 〈m1, 2, e1〉 and 〈m1, 1, e2〉 are

updated to {e1, e4} and {e2, e4}, respectively (as shown by

〈m1, 2, {e1, e4}〉 and 〈m1, 1, {e2, e4}〉 in Figure 2(c)).

To control the number of cache states containing m1, we

perform a merge operation at control flow edge e4. The

merge operation for must cache analysis takes the maximum

age of a memory block and loses the entire control flow

information. As a result, after merging 〈m1, 2, {e1, e4}〉 and

〈m1, 1, {e2, e4}〉 for must cache analysis, we get 〈m1, 2, φ〉.
Due to this merge operation, we can always control the number

of micro-architectural states in our framework.

It is worthwhile to note the difference between merge

and join operation in our framework. For the time being

assume that we had performed the merge operation between

〈m1, 2, {e1}〉 and 〈m1, 1, {e2}〉 at the first control flow join

point (i.e. at J1). As a result, we had obtained a cache

state 〈m1, 2, φ〉 after the first control flow join. If we try to

propagate the cache state 〈m1, 2, φ〉 along e3, we check the

satisfiability of a formula Ψflow ∧ prede3, which is clearly

satisfiable. Consequently, we had not eliminated any cache

state along e3 and all subsequent accesses to m1 would not

be classified as cache hits.

Continuing in a similar sequence of join and merge opera-

tion, we obtain the cache state 〈m1, 2, φ〉 propagated along the

backedge. As a result, all subsequent accesses of m1 can be

categorized as cache hits. Note that the key difference in our

framework was made by removing the infeasible cache state

〈m1, 2〉 (in the traditional must cache analysis framework)

along control flow edge e3. This infeasible cache state was

detected using the infeasible path information computed by

program flow analysis (i.e. Ψflow) and augmenting the abstract

interpretation framework.

III. GENERAL FRAMEWORK

In this section, we shall introduce the general idea behind

our analysis framework. We shall show how an abstract



interpretation based analysis framework can be augmented

with the help of a satisfiability solver to generate more precise

analysis outcome.

A. Program flow analysis

Our proposed framework uses program flow analysis to rule

out certain infeasible micro-architectural states. For program

flow analysis, we currently look at finding the infeasible

branch pairs. Assume two branch conditions x ≤ 0 and x ≥ 2
in a program. If x is not modified, both x ≤ 0 and x ≥ 2
cannot be true for any execution. As a result, the control flow

edges associated with the true evaluations of x ≤ 0 and x ≥ 2
constitute an infeasible branch pair. Such infeasible branch

pairs can be computed automatically (such as using [12], [22])

or they can be provided manually by the user.

In the past few decades, satisfiability (SAT) solver tech-

nology has made significant progress. An interesting feature

about infeasible branch pairs is that they can easily be encoded

as propositional logic formula. Let us introduce an atomic

proposition prede associated with each control flow edge e
in the program. prede captures the execution of control flow

edge e. prede is true if control flow edge e is executed and

false otherwise. Therefore, an infeasible branch pair 〈bi, bj〉
can be encoded as the following propositional formula:

ϕ ≡ ¬predbi ∨ ¬predbj (3)

At the end of program flow analysis, therefore, we have

a set of clauses (as shown in Equation 3) in conjunctive

normal form (CNF). Let us assume Ψflow represents this CNF

formula. Therefore, Ψflow captures certain infeasible path

patterns (specifically infeasible branch pairs) in a program.

Given the information computed by program flow analysis

(i.e. Ψflow), we define an oracle Θ on any propositional

formula η as follows:

Θ(η) =

{

true, if Ψflow ∧ η is satisfiable;

false, otherwise
(4)

Note that any satisfiability solver (such as Minisat [2]) can be

used as the oracle Θ. Θ will be used to eliminate infeasible

micro-architectural states.

B. Augmenting abstract interpretation

The key idea behind our analysis framework is to inject

the notion of path sensitivity inside abstract interpretation. A

fully path sensitive approach is definitely not scalable, as it

leads to a path explosion. Therefore, we augment the abstract

interpretation in a fashion such that path explosion never occur

and the state space of the analysis can always be controlled.

In the following, we shall briefly describe the key components

of the analysis.

Changing the abstract domain: Assume an abstract in-

terpretation based analysis framework with abstract domain

D. To handle partial path sensitivity, our proposed analysis

framework augments this abstract domain D as follows:

D
′ : D× P(E) (5)
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In the above equation, E captures the set of all control flow

edges in the program and P(E) represents the set of all

subsets of E. Therefore, at any specific program point p,

an element from the changed abstract domain D
′ is of the

form 〈d, {e1, e2, . . . , ek}〉 where d ∈ D and {e1, e2, . . . , ek}
captures the set of control flow edges along which d has been

propagated to p.

Transfer and join function: Before going into the details

of transfer and join function, we first briefly describe the

notion of program points in our analysis framework. We define

the program point as the control flow between two instructions.

We distinguish the two different types of program points in

our framework as shown in Figure 3. Figure 3(a) captures the

control flow inside a basic block of the program CFG. On the

other hand, Figure 3(b) captures the control flow between two

different basic blocks. For a specific program point p, we shall

use src(p) to denote the source of the control flow captured

by p, whereas dest(p) will be used to denote the destination

of the control flow captured by p.

Transfer function of our proposed analysis framework is

applied at each program point. However, our proposed transfer

function has two key components, depending on the location

of the program point. More precisely, our proposed transfer

function has the following semantics (P denotes the set of all

program points):

τ : D′ × P → D
′

τ(d′, p) =











τbr • τin(d
′, p), if src(p) is at the end

of a basic block;

τin(d
′, p), otherwise.

(6)

• denotes the function composition. In Equation 6, τbr captures

the transfer function used at the control flow across basic

blocks (Figure 3(b)) and τin captures the transfer function

used at the control flow inside a basic block (Figure 3(a)).

The computation of τin largely depends on the type of anal-

ysis, as it requires updating the abstract state by considering

each instruction. τbr, on the other hand, is the key to our

proposed framework and it is used to eliminate the spurious

(i.e. infeasible) abstract states. Assume that ep captures the

control flow edge associated with program point p when

src(p) is at the end of a basic block. Further assume d′ ∈ D
′

and d′ = 〈d,E〉 (where E ⊆ E and E is the set of all control

flow edges).
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We define τbr(d
′, p) as follows:

τbr(d
′, p) =

{

φ, if Θ(
∧

e∈E prede ∧ predep) is false

〈d,E ∪ {ep}〉, otherwise.

(7)

Recall that prede denotes the atomic proposition which

evaluates to true if and only if control flow edge e is executed.

Θ is the oracle (as described in Equation 4) used to check the

feasibility of control flow E ∪ {ep}. Equation 7 serves two

purposes: first, to eliminate spurious abstract states (captured

by the first case in Equation 7) and secondly, to associate the

notion of path sensitivity with abstract states (captured by the

second case in Equation 7).

Join operation with our augmented abstract domain D
′

operates in a similar fashion as with the join operation with

original abstract domain D, with one crucial difference. After

the join operation is performed with D
′, a single element from

the original abstract domain D may have multiple instances in

the joined abstract state. These multiple instances may appear

due to the propagation of a single element in D along different

control flow paths. As a result, a single element from the

original abstract domain D might be associated with different

subsets of control flow edges, leading to different elements in

the augmented abstract domain D
′ in the joined abstract state.

Controlling the number of abstract states: The join oper-

ation in our proposed framework may enlarge the number of

abstract states compared to the original abstract interpretation

based framework. As a result, performing the join operation in

an uncontrolled fashion may lead to state explosion. Therefore,

our proposed framework controls the number of elements

in the abstract state at each control flow edges (i.e. after

performing the τbr operation). This is done by pruning the

number of tractable elements with a special operation Π. If

there is a pair of elements d′
1
, d′

2
∈ D

′ such that d′
1
= 〈d,E1〉

and d′
2
= 〈d,E2〉, they are merged to a single element 〈d, φ〉

using the operation Π. In an abstract state, Π is applied until

there is at most one element in the abstract state (∈ D
′) for

each element in the original abstract domain D.

Figure 4 shows a schematic view of our overall framework.

The join operation used by our framework may increase the

number of elements in the abstract state, due to the presence

of different control flows. τbr operation at a branch location

may prune some of the infeasible elements in an abstract state

as also shown in Figure 4. Finally, after merge operation (Π),

the size of the abstract state is controlled, which in turn lead

to a tractable analysis framework.

Note that we apply the merge operation at each control flow

edge. Therefore, the expansion in the number of elements after

the join operation is bounded by a magnitude equal to the

incoming degree of any basic block, typically a small number.

C. Instruction cache analysis via AI+SAT

In this section, we shall instantiate our proposed frame-

work for instruction cache analysis. Abstract interpretation

based instruction cache analysis was initiated in [23]. Each

instruction is categorized as all-hit (AH), all-miss (AM) or

not-classified (NC). An instruction is categorized as AH, if

it is found in the cache whenever it is accessed, whereas

an instruction is categorized AM, if it is never in the cache

whenever it is accessed. If an instruction cannot be categorized

as either AH or AM, it remains not-classified (NC). For such

a categorization of different instructions, usually two different

analyses are employed: must and may. Must cache analysis

is used for statically predicting a sound under-estimation

of cache content at each program point. As a result, must

cache analysis can be used for AH categorization of different

instructions. On the other hand, may cache analysis is used for

statically predicting a sound over-estimation of cache content

at each program point. Consequently, we can use may cache

analysis for AM categorization of instructions.

Modifying abstract domain: The abstract domain of the

original instruction cache analysis can be defined as a cross

product of two different abstract domains as follows:

D : P(M× A) (8)

with

A = {1, . . . ,K} ∪ {∞} (9)

where M denotes the set of all memory blocks and A denotes

the set of all possible ages of a memory block inside a K-

way set-associative cache. A tuple of the form 〈m,∞〉 ∈ D

captures that m does not reside in the cache.

In our proposed framework we augment the original abstract

domain D to D
′ as follows:

D
′ : P(M× A× P(E)) (10)

where E is the set of all control flow edges. Therefore, an

entity in the abstract domain D
′ is a triplet 〈m, a,E〉.

Modifying transfer and join function: The modified trans-

fer function can now be described as follows:

τ : D′ × P → D
′

τ(〈m, a,E〉, p) =











τbr • τin(〈m, a,E〉, p), if src(p) is at

the end of a basic block;

τin(〈m, a,E〉, p), otherwise
(11)

• denotes the function composition and the transfer function

τ now has two different controls depending on the location of

program point p. If we assume that mp denotes the memory

block accessed at src(p), τin can be defined as follows:



τin(〈m, a,E〉, p) =

{

〈Urepl(〈m, a〉, p), φ〉, if mp = m

〈Urepl(〈m, a〉, p), E〉, otherwise

(12)
In Equation 12, Urepl captures the instruction cache update

operation (in the original abstract domain D) for a particular

cache replacement policy repl. Note that our framework is not

restricted to a particular replacement policy employed by the

instruction cache.

τbr is applied at a branch point. Some of the triplets

present in the input abstract cache state may not be feasible

along some branches. Therefore, while performing the transfer

operation along a control flow edge, only the feasible triplets

are transferred to the output abstract cache state. Assume that

ep captures the control flow edge associated with program

point p. We define τbr for instruction cache analysis as follows:

τbr(〈m, a,E〉, p) =

{

∅, if Θ(
∧

e∈E prede ∧ predep) is false

〈m, a,E ∪ {ep}〉, otherwise

(13)

Recall that Θ is the oracle (as described in Equation 4) used

to check the feasibility of control flow E ∪ {ep}.

While performing a Join operation, a memory block m,

may appear along different control flows. Moreover, m might

have different ages in the cache along different control flows.

In our proposed framework, we do not lose the information

about the different ages of the same memory block along

different control flows. Therefore, in our proposed framework,

we define the must and may join operations as follows:
⊔

Must

,
⊔

May

: D′ × D
′ → D

′ (14)

⊔

Must

(D1, D2) =

{〈m, a1, E1〉 ∈ D1 | ∃a2, E2 : 〈m, a2, E2〉 ∈ D2} ∪

{〈m, a2, E2〉 ∈ D2 | ∃a1, E1 : 〈m, a1, E1〉 ∈ D1} (15)
⊔

May

(D1, D2) = D1 ∪D2 (16)

May join operation simply takes the union of two abstract

cache states, on the other hand, must join operation takes

also the union operation, but restricted to the memory blocks

which are present in both the abstract cache states (D1 and

D2). It is important to note that the different ages (∈ A) of a

memory block (along different control flows) will be retained

after Equations 15-16. Changes in the age of a memory block

in a cache set are handled in merge operation (discussed next).

Merging abstract states: We shall now show how we

control the number of abstract cache states at each control flow

edges. Note that the join operation in our proposed framework

leads to more elements in the abstract cache state as compared

to the original analysis proposed in [23]. However, since we

prune the number of abstract cache states at each control flow

edges, the expansion in the number of abstract cache states is

still bounded.

Assume that we obtain an abstract cache state D ∈ D
′

after performing τbr at a branch location. The output of merge

operation depends on the type of cache analysis (i.e. must or

may cache analysis). Assume that Πmust (Πmay) denotes the

merge operation applied for must (may) cache analysis. The

main purpose of the merge operation is to control the number

of cache states and therefore, after each merge operation, we

ensure that the resulting abstract cache state contain at most

one element for each memory block. Consider two elements

〈m, a1, E1〉, 〈m, a2, E2〉 ∈ D. The output of Πmust and Πmay

will be as follows:

Πmust(〈m, a1, E1〉, 〈m, a2, E2〉) = 〈m,max(a1, a2), φ〉 (17)

Πmay(〈m, a1, E1〉, 〈m, a2, E2〉) = 〈m,min(a1, a2), φ〉 (18)

Therefore, after performing Πmust, we retain the maximum

age of each memory block m. On the other hand, after

performing Πmay , we retain the minimum age of each memory

block m. Since the merge operation is performed at each

control flow edge, we can now state the following property

for our proposed framework:

Property 3.1: Let us assume B denotes the set of all basic

blocks and degin(B) denotes the incoming degree of a basic

block B in the CFG. For a K-way set-associative cache, there

could be at most |K| × max
B∈B

degin(B) number of elements

for any memory block in any abstract cache state.

Since both degin(B) and K are typically small, we can

easily control the number of abstract cache states.

It is worthwhile to mention that the necessary pruning of

abstract cache states has already been performed during the

computation of τbr (Equation 13). Therefore, by merging the

cache states using Πmust and Πmay we are not entirely losing

the partial path sensitivity used by our framework. On the other

hand, merging of abstract cache states leads our computation

to be tractable in practice.

Since our proposed framework is built up on the basic

abstract interpretation (AI) approach, it is guaranteed to give at

least as precise cache analysis as the basic AI approach [23].

The main purpose of our proposed framework is to integrate

the program flow information into cache analysis. With little

or absence of any program flow information, our framework

will give exactly same result as in [23].

IV. EXTENSION

A. Data Cache Analysis

In this section, we describe the extension of our framework

for data cache analysis. We use the scope-aware persistent

(SCP) analysis [18] as the baseline analysis for data caches.

SCP analysis was selected because the WCET estimates gen-

erated by this method are safe and more accurate than other

existing methods. In SCP analysis, each memory block m is

associated with a temporal scope. For a particular memory

block m, its temporal scope denotes the set of loop iterations

where m might be accessed. If two different memory blocks

map to the same cache set but they have disjoint temporal

scopes, they cannot conflict in the cache. SCP analysis cate-

gorizes data blocks as persistent or non-persistent, on the basis

of their temporal scopes. Although the SCP analysis is more



accurate than other abstract interpretation based methods, the

WCET estimated by the method can still be over-estimated.

This might happen due to the presence of infeasible paths in

the program CFG. By extending the SCP analysis using our

framework, we can remove such over-estimation and thereby

produce a more accurate WCET.

Since the SCP analysis is based on temporal scopes, the

transfer functions (i.e. data cache update operations) are de-

fined with respect to each program loop. For a given loop level

L, the transfer function of our proposed framework is similar

to Equation 11 and it can be described as follows:

τ(〈m, a,E〉, p, L) =



















τbr • τin(〈m, a,E〉, p, L),

src(p) is at the end of a basic block;

τin(〈m, a,E〉, p, L), otherwise

(19)

Note that • denotes function composition. τbr for the extended

SCP analysis operates in a similar fashion as in the instruction

cache analysis (see Equation 13). However, τin for the SCP

analysis is slightly different from the τin described in Equation

12. This is due to the fact that SCP analysis is scope-sensitive

(unlike the instruction cache analysis). Let us assume Mp

denotes the set of memory blocks accessed at a program point

p. For a given loop level L, τin can be defined as follows:

τin(〈m, a,E〉, p, L) =






























〈m, a,E〉, if ∀mi ∈ Mp. (ψ(mi) ∩ ψ(m) = φ ∨

π(mi) 6= π(m))

〈UD(〈m, a〉, p, L), E〉, if ∃mi ∈ Mp. (ψ(mi) ∩ ψ(m) 6= φ

∧π(mi) = π(m)) ∧m /∈ Mp

〈UD(〈m, a〉, p, L), φ〉, otherwise
(20)

ψ(m) denotes the set of iterations in loop L where m might

be accessed (i.e. temporal scope of m) and π(m) captures

the cache set in which memory block m is mapped. The

first case (in Equation 20) captures the scenario when none

of the memory blocks in Mp conflict with m in the data

cache (either due to disjoint temporal scopes or due to the

mapping in disjoint cache sets). If some memory block in Mp

conflicts with m in the data cache, the scope-aware data cache

update operation UD (used in [18]) is used to update the data

cache state. Since data cache replacement policy may only

change UD in Equation 20, our proposed framework remains

unchanged for different data cache replacement policies.

The SCP join function as defined in [18], can be modified

in the same fashion as we do for the join operation in the

instruction cache analysis (see Equations 15-16).

B. Branch Target Buffer Analysis

Branch Target Buffer (BTB) is used to predict the target

address of a branch instruction, before the target address is

actually computed. Since the computation of a target address

has some associated penalty, correct prediction of a target

address from BTB may greatly improve the program execution

time. As a result, an improved BTB analysis may lead to

a more accurate WCET prediction. Previous study (e.g. [8])

has shown the importance of BTB analysis for static WCET

prediction. The work of [8] uses an abstract interpretation

based framework for statically analyzing the BTB content and

categorizing the branch instructions on the basis of BTB states.

As with any other abstract interpretation based approach, the

analysis proposed in [8] is also path in-sensitive and it suffers

due to the estimation of infeasible BTB states.

We extend the framework for BTB analysis as proposed in

[8] with our approach. The new domain of the BTB analysis

can be formulated as follows:

D
′ : P(BR× A× P(E)) (21)

where BR is the set of all branch instructions. All other

parameters in the equation have the same interpretation as

in equation (10). The join and the transfer functions can be

modified in exactly the same fashion as they were modified

for the instruction cache analysis (see Equations 11-16).

C. Shared instruction cache analysis

Finally we show how our framework can be extended for

analyzing multi-core systems with shared instruction caches.

We use our previous work [15] as a baseline for the augmented

abstract interpretation framework. Let us assume a multi-core

system where each core has a private L1 cache and all the

cores share an L2 cache. The work in [15] first analyses both

the L1 and L2 cache using [23], [17] ignoring the inter-core

cache conflicts and finally, it recategorizes the memory blocks

in L2 cache by taking into account the shared cache conflicts.

Assume a program P1 running on Core 1 and assume that

P1 accesses a memory block mp1. Further assume mp1 is

categorized as AH in the shared L2 cache without consider-

ing inter-core cache conflicts. After inter-core cache conflict

analysis, the AH categorization of memory block mp1 is

changed to NC if and only if the following condition holds:

k − agesinglecore(mp1) ≤ X , where k is the associativity of

the shared L2 cache, agesinglecore(mp1) captures the age of

memory block mp1 in the shared L2 cache set before inter-

core conflict analysis and X is the amount of shared cache

conflicts generated by cores other than Core 1.

If we use augmented abstract interpretation instead of basic

abstract interpretation, we can get a precise cache hit-miss

categorization for L1 cache. A precise cache hit-miss catego-

rization of memory blocks in L1 cache leads to a lesser number

of memory blocks accessing the shared L2 cache. As a result,

the amount of shared cache conflicts (i.e. X) may reduce.

Moreover, since our proposed framework may generate a better

must cache analysis (see Section III-C), it may also reduce the

quantity agesinglecore(mp1). Both of these developments in

turn reduce the number of memory blocks of P1 which need

to be re-categorized to NC in the shared L2 cache. As a result,

we may increase the accuracy of WCET estimates even in the

presence of shared caches.

V. EVALUATION

Experimental Set-up: The experiments were performed

using the timing analyser Chronos [14]. It uses a 5-stage



pipeline with in-order execution, when generating the WCET

estimates for our experiments. Chronos uses the abstract

interpretation based framework proposed in [23], to analyze

instruction caches. This serves as the baseline for our in-

struction cache analysis. The baseline for our data cache

analysis framework was published in [18]. The BTB analysis

is implemented into Chronos using the abstract interpretation

based framework proposed in [8]. The framework proposed

in [15] serves as a baseline analysis for the multi-core, shared

instruction cache analysis. To check the satisfiability of a given

partial path ϕ, we use the open-source SAT solver Minisat [2].

Subject programs Description Code size

Bytes1 LOC

nsichneu Simulates an extended Petri Net. Auto-

generated code with many if-statements [4]

63720 4253

Papabench Auto-navigation utility from an Unmanned

Aerial Vehicles (UAV) controller [20]

16920 1097

Jetbench Single-thread getThermo utility from a real-

time jet engine performance calculator [21]

6984 315

Communication
manager

Auto-generated code from the Rhapsody

[3] model of CTAS weather manager [5]

4248 273

TABLE I: Program Set I

Table I shows the subject programs for our experiments.

Note that the prime motivation behind our work is to re-

duce the over-approximation in WCET estimation, due to

the presence of infeasible paths. Infeasible paths can often

be found in the programs, auto-generated from high level

modeling languages. Although, it is not uncommon to have

a few infeasible paths in manually written programs as well.

Therefore, we choose a combination of auto-generated and

manually written programs for our experiments.

All of our experiments were performed on a machine having

an Intel Core-i5 processor with 4 GB RAM and running

Ubuntu 9.04 OS. For all our experimental results, we mea-

sure the WCET improvement as
WCETbase−WCETaugmented

WCETbase
×

100%, where WCETaugmented captures the WCET obtained

using our approach and WCETbase captures the WCET

obtained using the baseline approach.

Instruction Cache Result: Figure 5a shows the results

of Instruction cache analysis using the augmented abstract

interpretation (AI+SAT) approach. We perform the analysis for

all programs in Table I, for a block size of 64 Bytes, on a 4-

way set-associative L1 cache. For a fair comparison, we chose

the cache size approximately equal to the program size (closest

power of two), for each subject program. We assume that there

is no L2 cache for this experiment and the latency for memory

access is 36 cycles. We also compare our approach with the

work in [6] (say AI+CBMC). The framework proposed in [6]

first generates the cache hit-miss categorization of a program

using basic abstract interpretation. It then uses CBMC [7] to

refine the set of NC categorized memory blocks. As a result

of this refinement, the WCET estimate might improve.

We compare the improvements in WCET estimation

achieved by the AI+SAT approach, with that of AI+CBMC

1code size in bytes = ending instruction address - starting instruction address

approach. We observe that the estimates generated by the

AI+SAT approach are more accurate than that of the

AI+CBMC approach, when both the analysis are run for

a comparable amount of time. We observed a maximum

improvement in WCET estimates of up to 25% for this set

of experiments. This improvement can be attributed to the

fact that all the programs in Table I have multiple program

paths inside loops. Some of these program paths are infeasible

and hence cause some over-estimation in the base analysis. By

applying the AI+SAT approach, we were able to remove some

of the over-estimation caused due to such infeasible paths.

However, it is worthwhile to mention that AI+CBMC is

a verification based method. As a result, it might be able

to produce better estimates, if run for sufficiently long. This

introduces a trade-off between WCET accuracy and analysis

time for using AI+SAT over AI+CBMC.

Data Cache Result: Figure 5c shows the results of data

cache analysis using the AI+SAT approach. Note that the

baseline analysis for data cache is scope-aware persistence

analysis [18]. We assume that L1 cache hit latency is 1 cycle

whereas the memory access latency is 36 cycles. Although

all the programs in Table I have very little data accesses on

their infeasible paths, we still get a noticeable improvement

for most of the programs via AI+SAT approach. The improve-

ments shown in Figure 5c are the maximum improvement for

programs in Table I, for any given cache size. The maximum

time taken for all the experiments under this section was under

2 minutes. As Figure 5c shows, all the subject programs other

than nsichneu have noticeable improvement in their WCET

estimates. This is because nsichneu has a very small data

set and it has very little data accesses across its infeasible

paths. However, this should not be considered as a limitation

of our approach, as the AI+SAT based framework will give

reasonable improvement for programs with many conflicting

data accesses along infeasible paths.

Another factor which might be affecting the efficacy of our

method can be the underlying address analysis. Address anal-

ysis usually generates an over-approximation of the memory

ranges which can be accessed for a given data access. Due

to this over-approximation, additional memory blocks might

lose their control flow information over the merge operations.

This leads to an imprecision in the abstract cache states and

overall WCET. Therefore, using a better address analysis will

directly improve the WCET accuracy via our approach.

Branch Target Buffer Result: Figure 5d shows the results

of branch target buffer (BTB) analysis, using the AI+SAT

approach. All the experiments for this set of analysis took less

than a minute to complete. We used a 2-way set associative

BTB with 256 entries. Also we took the branch misprediction

penalty as 15 cycles. The maximum improvement in WCET

estimation was observed for Papabench (approximately

14%). We did not observe any considerable improvement for

Jetbench. This can be due to fact that Jetbench has very

less branch instructions along the infeasible program paths.

For the other two subject programs we observed a moderate

improvement in the WCET estimation.
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(b) Shared instruction cache analysis
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Fig. 5: Improvement in the WCET accuracy via AI+SAT approach, analysis time (in seconds) is shown above each bar

Shared cache result: Finally, we present the results for

the shared instruction cache analysis. For this set of experi-

ments, we assume a multi-core system with two cores. More-

over, we assume that each core has a private L1 instruction

cache and the L2 instruction cache is shared by both the cores.

We ran a program from Table I on Core1 and a program from

Table II (Table II programs are taken from [4]) on Core2.

Subject programs Description
Code size

Bytes1 LOC

jfdcint Discrete cosine transform on 8x8 block 5512 375

edn Signal processing application 3160 285

ndes Complex embedded code 3816 231

adpcm ADPCM coder 12568 879

TABLE II: Program Set II

We used a direct mapped L1 cache with a cache size of

256 Bytes and a block size of 32 bytes. We choose a small

L1 cache to generate sufficient number of conflicts in the L2

cache. The size of the shared L2 cache is chosen depending

upon the code size of the program running on Core1. L2 cache

hit latency is taken as 6 cycles and memory access latency

is taken as 30 cycles. We perform the shared cache analysis

using the AI+SAT approach and measure the improvement in

WCET estimation for the programs running on Core2. We

then compare the improvements achieved by our approach,

with the improvements achieved by using the AI+CBMC [6]

approach (using the same cache configurations). AI+CBMC

was run for the same amount of time as AI+SAT.

Figure 5b shows the geometric mean of improvements in

WCET estimation, for all the programs running on Core2. We

observed a noticeable improvement in the WCET estimates for

all the programs running on Core2, produced by the AI+SAT

approach. We also observed that the improvements achieved

by the AI+SAT were significantly better than the improvement

achieved by the AI+CBMC, in the same amount of time.

By applying AI+SAT to the programs running on Core1, we

were able to reduce a reasonable number of conflicts in the

shared cache. This leads to more accurate WCET estimates,

for programs running on Core2.

Discussion: In this section, we have described some

of the experiments we performed to evaluate the efficacy

of our framework. We have performed experiments to an-

alyze instruction caches, data caches, branch target buffers

and shared instruction caches via AI+SAT. We observed a

reasonable improvement in WCET estimation for most of

the subject programs, in all of the above mentioned analysis

(key results of the experiments are presented in Figure 5).

This observation supports the fact that AI+SAT approach can

indeed be used as a general framework to perform various

parts of micro-architectural modeling. We also observe that

better improvements in WCET estimation were achieved for

programs which had more infeasible paths. Since this property

is often observed in auto-generated software, our analysis can

be useful for micro-architectural modeling of such software.

VI. RELATED WORK

Since the initiation of research in WCET analysis, micro-

architectural modeling has been an active research area. Ini-

tial work on micro-architectural modeling has used integer

linear programming (ILP) [19]. However, the work of [19]

faces scalability issues due to a huge number of gener-

ated ILP constraints. Therefore, abstract interpretation (AI)



based micro-architectural modeling have been proposed sub-

sequently. Among others, the work proposed in [23] deserves

mention. The work in [23] proposes AI-based cache analysis

for WCET prediction. The solution has been proved scalable

and it has also been applied in industry strength tool chain (e.g.

aiT [1]). The basic approach proposed in [23] has also later

been extended to analyze multi-level caches [17], data caches

[18], branch target buffers (BTB) [8] and shared caches [15].

As a result, for most of the WCET analyzers, AI has emerged

to be the basic approach used for micro-architectural modeling.

Program flow analysis has also been parallely investigated

by the WCET research community. Program flow analysis

has mainly been concentrated towards finding the loop bound

and infeasible path patterns in a program [9], [11], [22].

As certain infeasible path patterns can easily be specified

by the programmer, researchers have proposed a flow-fact

language [10] to capture the common forms of infeasible path

patterns. Subsequent research [12] has developed techniques to

compute the flow facts of a program automatically. However,

all these works aim to improve the WCET at the program

path level and they ignore the effect of flow analysis results on

micro-architectural modeling. Our work leverages the research

done in program flow analysis for precise micro-architectural

modeling, an issue mostly ignored by the research community.

Nevertheless, the precision gain obtained by our framework

will lead to a better WCET of the overall program.

A recent approach [13] has looked at the combination of

abstract interpretation (AI) and model checking for WCET

analysis. However, the work proposed in [13] uses model

checking for WCET calculation only; cache analysis is ac-

complished by conventional AI-based methods. As a result,

the work proposed in [13] can overestimate the WCET due to

the presence of infeasible cache states. On the other hand, our

primary goal is to generate an infeasible path-aware micro-

architectural modeling framework (including cache analysis)

to improve the accuracy of WCET estimation. Other works

such as [16] have proposed techniques to make AI-based

analysis, path-sensitive, but none of these works discusses

techniques for path-sensitive, micro-architectural analysis.

Our previous work [6] has investigated precise cache model-

ing using abstract interpretation (AI) and model checking. The

primary goal of [6] was to efficiently eliminate certain infea-

sible cache states. This was accomplished by using the path-

sensitive search process employed in a model checker. How-

ever, the work in [6] requires code instrumentation to refine

the number of cache conflicts. Such a code instrumentation

requires modification for different cache replacement policies

and for micro-architectural modeling other than caches. On

the other hand, our work in this paper proposes to extend any

AI-based framework using satisfiability (SAT) checking and

it does not require any code instrumentation. As a result, we

can show the applicability of our current approach for a variety

of micro-architectural modeling including (shared) instruction

caches, branch target buffers and data caches. Moreover, the

gain in WCET accuracy using our approach is much better

compared to [6], in a comparable amount of time.

VII. CONCLUSION

In this paper, we have designed and implemented a general

micro-architectural modeling framework using abstract inter-

pretation and satisfiability checking. The key novelty in our

work is to eliminate the infeasible micro-architectural states.

Such an elimination has been achieved by using the program

flow analysis results and augmenting the classical abstract

interpretation framework. Our experiments clearly suggest the

importance of our proposal, as we are able to substantially

improve the accuracy of WCET analysis in the presence of

many infeasible program paths.
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