
Directed Automated Memory Performance Testing

Sudipta Chattopadhyay

Singapore University of Technology and Design (SUTD), Singapore
sudipta_chattopadhyay@sutd.edu.sg

Abstract. Understanding software non-functional properties (e.g. time, energy
and security) requires deep understanding of the execution platform. The design
of caches plays a crucial role in impacting software performance (for low latency
of caches) and software security (for cache being used as a side channel). We
present CATAPULT, a novel test generation framework to systematically explore
the cache behaviour of an arbitrary program. Our framework leverages dynamic
symbolic execution and satisfiability modulo theory (SMT) solvers for generat-
ing test inputs. We show the application of CATAPULT in testing timing-related
properties and testing cache side-channel vulnerabilities in several open-source
programs, including applications from OpenSSL and Linux GDK libraries.

1 Introduction

Program path captures an artifact of program behaviour in critical software validation
process. For instance, in directed automated random testing (in short DART) [15], pro-
gram paths are systematically explored to attempt path coverage and construct a test-
suite for software validation. Several non-functional software properties (e.g. perfor-
mance and security) critically depend on the execution platform and its interaction with
the application software. For validating such properties, it is not sufficient to explore
merely the program behaviour (e.g. program paths), it is crucial to explore both program
behaviour and its interaction with the underlying hardware components (e.g. cache and
communication bus). Hence, any technique that systematically explores both the pro-
gram behaviour and the associated changes in the hardware, can be extremely useful
for testing software non-functional properties.

Number of cache misses

N
um

be
r o

f i
np

ut
s

13800

0

213 279

Fig. 1. Distribution of cache misses within a single program path [1]

In order to illustrate our observation, let us consider Figure 1, which specifically
records cache performance. We have generated Figure 1 by executing an implemen-
tation of Advanced Encryption Standard (AES) [1]. We randomly generated 256000

2 Sudipta Chattopadhyay

different inputs to execute a single path of the respective implementation. Figure 1
captures the distribution of the number of inputs w.r.t. the number of observed cache
misses [12]. We clearly observe a high variation on cache misses, hence the overall
memory performance, even within the scope of a single program path. To solve the
problem of systematically exploring cache behaviour and to expose the memory perfor-
mance of a program, is the main contribution of our paper.

We present CATAPULT – a framework that leverages dynamic symbolic execu-
tion and satisfiability modulo theory (SMT) to explore both program behaviour and its
associated cache behaviour. CATAPULT takes the binary code and a cache configura-
tion as inputs, and produces a test suite as output. Each test in the test suite exposes a
unique cache performance (i.e. the number of cache misses). Our framework does not
generate false positives, meaning that the cache performance associated with each test
indeed serves as an witness of an execution. Moreover, if our framework terminates,
it guarantees to witness all possible cache behaviour in the respective program. There-
fore, CATAPULT shares all the guarantees that come with classic approaches based on
dynamic symbolic execution [15].

Our approach significantly differs from the techniques based on static cache analy-
sis [20]. Unlike approaches based on static analysis, CATAPULT guarantees the absence
of false positives. Moreover, unlike static analysis, CATAPULT generates a witness for
each possible cache behaviour. To explore different cache behaviour of a program is,
however, extremely involved. This is due to the complex interaction between program
artifacts (e.g. memory-related instructions) and the design principle of caches. In order
to solve this challenge, we have designed a novel symbolic model for the cache. Given
a set of inputs, expressed via quantifier-free predicates, such a symbolic model encodes
all possible cache behaviour observed for the respective set of inputs. As a result, this
model can be integrated easily with the constraints explored and manipulated during
dynamic symbolic execution. The size of our symbolic cache model is polynomial with
respect to the number of memory-related instructions.

In summary, this paper makes the following contributions:

1. We present a test generator CATAPULT, leveraging on dynamic symbolic execu-
tion, to systematically explore the cache behaviour and hence, the memory perfor-
mance of a program.

2. To show the generality of our approach, we instantiate our framework for two
widely used cache replacement strategies – least recently used (LRU) and first in
first out (FIFO).

3. We show the application of CATAPULT in two different contexts – (i) for testing
timing-related constraints and (ii) for testing cache side-channel leakage.

4. We implement our framework on top of a state-of-the-art symbolic execution tool
KLEE [2] and evaluate it with several cryptographic and device driver routines
in OpenSSL library and Linux GDK library. For all the chosen subject programs,
exhaustive test input generation is infeasible. However, CATAPULT terminates for
all the subject programs and it generates all tests within a feasible timing-range
from 10 seconds to 4.5 hours. CATAPULT prototype and the obtained results are
available for future usage and extension in the following URL:

https://bitbucket.org/sudiptac/catapult/

https://bitbucket.org/sudiptac/catapult/

Directed Automated Memory Performance Testing 3

2 Background and Overview

Background on caches A cache is a fast memory employed between the CPU and
the main memory (DRAM). For a given memory access, the cache is looked up first.
A cache configuration can be defined by three parameters – cache line size (in bytes),
number of cache sets, associativity and replacement policy. In an M-bit memory ad-
dress, S bits are reserved to distinguish the cache set in which the respective address is
mapped to and B bits are reserved to distinguish individual bytes within a cache line.
For an arbitrary memory address addr, we say that it belongs to the memory block start-
ing at address

⌊
addr
2B

⌋
. If the content of addr is not found in the cache, 2B consecutive

bytes are fetched from the memory address
⌊
addr
2B

⌋
and they are mapped into the cache

set
⌊
addr
2B

⌋
mod 2S . Each cache set can only hold as many cache lines as the associativ-

ity of the cache. Therefore, if the associativity of the cache is A, the overall size of the
cache is

(
2S · 2B · A

)
. Finally, since different memory blocks may map into the same

cache set, caches store a tag in each cache line to distinguish different memory blocks.
Since (S + B) bits are used to identify cache sets and individual bytes in a cache line,
the rest of the bits in the memory address are used as tag. For an A-way set-associative
cache, a cache state is a set of ordered A-tuples, one for each cache set. Such a tu-
ple captures the set of memory blocks contained in the respective set and the order in
which these blocks would be replaced. For example, an ordered pair 〈m1,m2〉 captures
the cache state where m2 would be replaced before m1 in a 2-way set-associative cache.

/* x is a program input */
char p[128];
unsigned char x;
char q[128];

if (x >= 0 && x <= 127) {
/* add reg1 and reg2 */
r1: load reg1, p[127-x]
r2: load reg2, q[x]
r3: add reg1, reg2
r4: store reg1, p[127-x]

} else {
/* do nothing */

}

p[0], q[127]
p[1]

x
q[0]
q[1]

q[126]
Cache

128 bytes

128 bytes

p[127] x=127 (#miss=3)

0 ≤ x ≤ 126 (#miss=2)

127 < x ≤ 255
(#miss=0)

(a) (b) (c)

Fig. 2. (a) a program where cache performance exhibits variation within a program path, (b)
mapping of variables in a 256 bytes cache, (c) cache performance with respect to different inputs

Overview In this section, we discuss the motivation behind our approach through the
example in Figure 2. For the sake of illustration, we use both assembly-level and source-
level syntax in Figure 2(a). However, our test generation is carried out directly on the
binary. Let us assume the code shown in Figure 2(a) runs on a platform having direct-
mapped (i.e. associativity A = 1), 256 bytes cache. The mapping of different variables
into the cache is shown in Figure 2(b). We assume that the variable x is also allocated
a register in the generated code. Therefore, reading variable x in the code fragment, as
shown in Figure 2(a), does not involve any cache access.

Let us assume that we want to check whether the code in Figure 2(a) exhibits more
than two cache misses when x is a program input. We first execute the program with

4 Sudipta Chattopadhyay

a random input x = 0. We also compute the path condition x ≥ 0 ∧ x ≤ 127 which
symbolically encodes all inputs exercising the respective program path. We note that
for x = 0, both r1 and r2 suffer cache misses. For x = 0, the store instruction r4 is a
cache hit, as p[127] is already loaded into the cache and it was not replaced by q[0].

Since dynamic symbolic execution aims to obtain path coverage, the next test input
will be generated by manipulating the path condition and solving the following con-
straint: ¬(x ≥ 0 ∧ x ≤ 127). This will result in inputs exercising the else branch in
Figure 2(a), which, in turn does not access memory.

It is worthwhile to note that classic symbolic execution may not reveal critical inputs
related to cache performance. For instance, executing the code in Figure 2(a), for x =

127, will access p[0], q[127] and p[0] in sequence. Since q[127] replaces p[0]
from the cache, all accesses will be cache misses. Figure 2(c) shows the partitioning of
the input space according to cache performance.

A classic symbolic-execution-based approach explores program paths instead of
cache behaviour. The if branch in Figure 2(a) encodes two different cache behaviors
– one for inputs 0 ≤ x ≤ 126 and another for input x = 127. Therefore, it is crucial
to devise a methodology that can differentiate inputs based on cache behaviour, even
though such inputs exercise the same program path.

How CATAPULT works For each explored program path, CATAPULT generates sym-
bolic constraints to encode all possible cache behaviour. For instance, consider the pro-
gram path captured by the path condition x ≥ 0 ∧ x ≤ 127. Assuming an empty cache,
the first load instruction will suffer a cache miss. For instruction r2, we check whether
the memory block containing address &q[x] has been accessed for the first time as
follows:

tag(r2) 6= tag(r1) ∨ set(r2) 6= set(r1)

where tag (respectively, set) captures the cache-tag (respectively, cache set) for the
memory address accessed by the respective instruction. Intuitively, the aforementioned
constraint is true if r2 accesses a different cache set than r1 or the memory address
accessed by r2 has a different cache-tag as compared to the memory address accessed
by r1. In such cases r2 will suffer a cold miss. The constraint is valid as p and q are
different arrays. Similarly, we can check whether r4 suffers a cold miss as follows:

(tag(r4) 6= tag(r1) ∨ set(r4) 6= set(r1)) ∧ (tag(r4) 6= tag(r2) ∨ set(r4) 6= set(r2))

This constraint is unsatisfiable, as r1 and r4 access the same memory address for all pos-
sible inputs. Therefore, r4 cannot suffer a cold cache miss. To check whether p[127-x]
can be replaced by r2 (hence inducing a cache miss at r4), we use the following set of
constraints.

(tag(r2) 6= tag(r4) ∧ set(r2) = set(r4))⇒ (miss4 = 1)

(tag(r2) = tag(r4) ∨ set(r2) 6= set(r4))⇒ (miss4 = 0)

The variable miss4 indicates whether r4 is a cache miss or not. CATAPULT explores
different solutions of miss4. In this example, miss4 is 1 for x = 127 and miss4 is 0
for 0 ≤ x ≤ 126. Therefore, by systematically generating symbolic constraints and
exploring the different solutions, CATAPULT can discover that r4 suffers a cache miss
only for input x = 127, leading to a total three cache misses in the respective execution.

Directed Automated Memory Performance Testing 5

3 Test Generation

Concrete inputs
satisfying the objective

Program
binary

Random
input

Symbolic
Execution

Generate
cache model

Path condition

Execution trace

Generate test
input

Objective (e.g. #cache- miss
exceeding a threshold)

test generation loop

Fig. 3. Our test generation framework

Figure 3 and Algorithm 1 outline all the stages involved in CATAPULT. Algorithm 1
takes a program P, the cache configuration C and an objective O as inputs. Informally,
O captures dynamic properties related to cache performance. In section 5, we show
how O is formulated to check (i) timing-related properties and (ii) cache side-channel
vulnerabilities. Given the inputs, Algorithm 1 leverages dynamic symbolic execution
and computes all unique tests (in the given time budget) that satisfy O.

We first execute P with a random input I and compute the path condition Ψpath as
well as the execution trace S. The trace S is captured via a sequence of pairs as follows:

S ≡ 〈(r1, σ1), (r2, σ2), . . . , (rn, σn)〉 (1)

Here ri denotes the i-th memory-related instruction executed and σi symbolically cap-
tures the memory address accessed by ri. For example, when we execute the code frag-

Algorithm 1 Test Generation Algorithm
Input: Program P , cache configuration C, objective O.
Output: A test suite T , where each test t ∈ T satisfies O

1: AllPCs = UnchkdPCs = T = empty
2: Select a random input I
3: Explore(P, C, I)
4: while UnchkdPCs 6= empty do
5: select ϕ ∈ UnchkdPCs
6: UnchkdPCs := UnchkdPCs \ {ϕ}
7: let ϕ← pc1 ∧ pc2 ∧ . . . ∧ pcr−1 ∧ pcr
8: if ϕ is satisfiable then
9: tθ ← concrete input satisfying ϕ
10: Explore(P, C, tθ)
11: end if
12: end while
13: Report generated test suite T
14:
15: procedure EXPLORE(P , C, t)
16: execute P on input t
17: let Ψpath be the path condition
18: let S be the execution trace
19: /* Generate the cache model */
20: /* See section 4 */
21: Γ (Ψpath) := CacheModel(C, Ψpath, S)
22: /* formulate objective (section 5) */
23: OS := ObjectivePred(S)

24: /* exclude current solutions */
25: /* this step ensures unique tests */
26: OS := ExcludeCurTest(T ,OS)
27: letΩ := Γ (Ψpath) ∧ OS ∧ Ψpath
28: /* Generate relevant tests */
29: /* See section 5 */
30: whileΩ is satisfiable do
31: get kθ satisfyingΩ
32: T

⋃
= {kθ}

33: refineOS to exclude solution kθ
34: Ω := Γ (Ψpath) ∧ OS ∧ Ψpath
35: end while
36: let Ψpath ≡ pc1 ∧ pc2 ∧ . . . ∧ pcu
37: /* build partial path conditions */
38: for i← 1, u do
39: ϕi := pc1 ∧ pc2 ∧ . . . pci−1 ∧ ¬pci
40: if ϕi /∈ AllPCs then
41: AllPCs

⋃
= {ϕi}

42: UnchkdPCs
⋃

= {ϕi}
43: end if
44: end for
45: /* end exploration of Ψpath */
46: end procedure

6 Sudipta Chattopadhyay

ment of Figure 2(a) with input x = 0, we obtain the following execution trace:

S ≡ 〈(r1,&p+ 127− x), (r2,&q + x), (r3,&p+ 127− x)〉

We use the variable missi to represent whether ri is a cache miss (set to 1 if ri was
a cache miss and set to 0 otherwise) for inputs satisfying Ψpath. The value of missi
depends on all symbolic memory addresses σk, where k ∈ [0, i). Therefore, we bound
the value of missi through symbolic constraints. In particular, given the execution trace
S and the path condition Ψpath, the procedure CacheModel computes Γ (Ψpath) for cache
configuration C (cf. line 21 in Algorithm 1). Such a model Γ (Ψpath) encodes all possible
values of missi for all i ∈ [1, n] and for any input satisfying Ψpath. In section 4, we
describe the formulation of Γ (Ψpath) in detail.

The cache model Γ (Ψpath) and the path condition Ψpath are used to generate test
inputs that satisfy the objective O (cf. lines 31-34). We first extract a predicate OS from
the execution trace S that captures such an objective (cf. line 23). For example, let us
assume our objective is to generate test inputs that suffer at least 1000 cache misses.
For an execution trace S, we can simply extract OS as

∑n
1 missi ≥ 1000. Subsequently,

we can generate a test input that satisfies the following formula:

Γ (Ψpath) ∧

(
n∑
i=1

missi ≥ 1000

)
∧ Ψpath (2)

The refinement of OS (line 33) depends on the context. For instance, let us assume that
the designer needs to compute (at most) one test for each scenario exhibiting at least
1000 cache misses. In such a case, the following refinement is made to OS:

OS = OS ∧

(
n∑
i=1

missi 6=
n∑
i=1

miss
(c)
i

)

where missi = miss
(c)
i (for i ∈ [1, n]) captures a satisfying solution of Constraint (2).

The procedure ExcludeCurTest ensures that the explored solutions in test suite T
are unique (cf. line 26). In particular, once OS is constructed from the execution trace
S, it modifies OS to exclude the previous solutions. For instance, if T includes solutions
of exhibiting 1000 and 2000 cache misses, objtrace is modified to OS ∧

∑n
i=1missi 6=

1000 ∧
∑n
i=1missi 6= 2000. Subsequently, this modified OS is leveraged to explore

different solutions of the predicate Ω (cf. lines 31-34).
When Γ (Ψpath) ∧ OS ∧ Ψpath becomes unsatisfiable, UnchkdPCs keeps track of all

unexplored partial path conditions (cf. lines 39-42) to manifest the remaining cache
behaviour. In particular, our test generation satisfies the following crucial property.

Theorem 1. CATAPULT guarantees to discover all possible cache behaviour upon ter-
mination. Besides, each input generated by CATAPULT witnesses a unique cache be-
haviour.

4 Generating Γ (Ψpath)

Given a path condition Ψpath and the execution trace S (cf. Equation (1)), this section
describes the formulation of Γ (Ψpath) – the set of all cache behaviour for inputs x

Directed Automated Memory Performance Testing 7

satisfying Ψpath (cf. line 21 in Algorithm 1). In order to explain the formulation of
Γ (Ψpath), we assume the following notations throughout the paper:

– 2S : The number of cache sets in the cache.
– 2B : The size of a cache line (in bytes).
– A : Associativity of cache.
– set(ri) : Cache set accessed by memory-related instruction ri.
– tag(ri) : The tag stored in the cache for accessing address σi (cf. Equation (1)).
– ζi : The cache state before ri and after ri−1.

The formulation of Γ (Ψpath) revolves around the concept of cache conflict. For-
mally, we define cache conflict as follows:

Definition 1 (Cache Conflict): rj generates a cache conflict to ri only if rj accesses a
different memory block than ri and executing rj can influence the relative position of
memory block

⌊
σi
2B

⌋
within the cache state ζi.

Clearly, rj generates cache conflict to ri only if j < i. In the next sections, we shall
elaborate other crucial conditions required for the generation of cache conflicts. Subse-
quently, we build upon such conditions to formulate the number of cache misses.

4.1 Modeling Symbolic Cache Access

Recall from Equation (1) that we record the address σi (σi can be symbolic or concrete)
for each memory-related instruction ri during the execution. From σi, we formulate the
accessed cache set set(ri) and the respective cache tag tag(ri) as follows:

set(ri) = (σi � B) &
(
2S − 1

)
; tag(ri) = (σi � (B + S)) (3)

In Equation (3), “&” captures a bitwise-and operation and “�” captures a right-shift op-
eration. Since σi can be symbolic, both set(ri) and tag(ri), as captured via Equation (3),
can be symbolic expressions.

4.2 Modeling Symbolic Cache Constraints

In this section, we formulate constraints for the following two types of cache misses:

– cold miss: Cold miss occurs if a memory block is accessed for the first time.
– eviction miss: Any cache miss other than cold misses.

Conditions for cold misses If ri accesses a memory block for the first time, the follow-
ing condition must hold:

Θcoldi ≡
∧

1≤k<i

((tag (rk) 6= tag (ri)) ∨ (set (rk) 6= set (ri))) (4)

Informally, Constraint (4) states that every memory access r ∈ {r1, r2, . . . , ri−1} is ei-
ther mapped to a different cache set than set(ri) or has a different tag compared to
tag(ri). This leads to a cold cache miss at ri.

In Constraint (4), for the sake of simplicity in the formulation, we assumed that
initially, the cache is not loaded with any memory block used by the system under test.
However, this condition can easily be relaxed via additional constraints that check the
(un)availability of memory block

⌊
σi
2B

⌋
in an arbitrary initial cache state.

8 Sudipta Chattopadhyay

Necessary conditions for cache conflict The basic design principle of cache dictates
that every cache set is independent. Therefore, a necessary condition for cache conflict
is that the accessed memory blocks are mapped to the same cache set. In particular, the
following two conditions must be satisfied for a possible cache conflict from rj to ri:

1. ψcnf (j, i): ri and rj access the same cache set. Therefore, we get the following:

ψcnf (j, i) ≡ (set(rj) = set(ri)) (5)
2. ψdif (j, i): ri and rj access different memory-block tags. Therefore, we have,

ψdif (j, i) ≡ (tag(rj) 6= tag(ri)) (6)

The satisfiability of ψcnf (j, i) and ψdif (j, i) is necessary irrespective of the underlying
cache replacement policy. However, these two constraints are not sufficient to guarantee
that rj can affect the cache state ζi (i > j). We need additional constraints that depend
on the specific replacement policy. In the subsequent sections, we formulate these con-
straints for two widely used replacement policies – LRU and FIFO.

Constraints for LRU caches In this section, we formulate a set of constraints that
precisely capture the cache conflict scenarios in LRU replacement policy.

r1:m1

m1 m2 m1 m1 m2

(miss) (miss) (hit) (hit)

no cache conflict

Memory access:

Cache content:

r2:m2 r3:m1 r4:m1 r1:m1

m1 m2 m1 m2 m1

(miss) (miss) (hit) (hit)

cache conflict

r2:m2 r3:m2 r4:m1

(a) (b)

Fig. 4. Cache conflict scenarios for caches with LRU policy. ri:mj captures memory-related in-
struction ri accessing memory blockmj . The rightmost position in the cache denotes the memory
block accessed in the cache the earliest. (a) r2 does not generate any cache conflict to r4, as m1
is reloaded between r2 and r4, (b) in order to count unique cache conflicts to r4, we only record
the cache conflict from r3 and not from r2, as both r2 and r3 access m2.

Conditions for eviction misses Let us check the conditions where instruction ri will
suffer a cache miss due to eviction. This might happen only due to instructions appear-
ing before (in the program order) ri. Consider one such instruction rj , for j ∈ [1, i).
Informally, rj generates a cache conflict to ri, only if the following conditions hold:

1. ψlrueqv(j, i): There does not exist any instruction rk where k ∈ [j + 1, i), such that
rk accesses the same memory block as ri (i.e.

⌊
σi
2B

⌋
). It is worthwhile to note that

the execution of rk will make the memory block
⌊
σi
2B

⌋
to be most recently used.

For instance, in Figure 4(a), r3 accesses memory block m1 and therefore, r2 cannot
generate cache conflict to r4. We capture ψeqv(j, i) via the following constraints:

ψlrueqv (j, i) ≡
∧

k: j<k<i

((tag(rk) 6= tag(ri)) ∨ (set(rk) 6= set(ri))) (7)

Directed Automated Memory Performance Testing 9

2. ψlruunq(j, i): Secondly, we need to count cache conflicts from unique memory blocks.
As an example, consider the example shown in Figure 4(b). r4 will still be a cache
hit. This is because both r2 and r3 access the memory block m2. In order to account
unique cache conflicts, we only record the cache conflict from the closest access to
different memory blocks. For instance, in Figure 4(b), we only record cache conflict
from r3 to r4. We use the constraint ψunq (j, i) for such purpose. ψunq (j, i) is sat-
isfiable if and only if there does not exist any memory-related instruction between
rj (where j ∈ [1, i)) and ri that accesses the same memory block as rj . Therefore,
ψunq (j, i) is captured as follows:

ψlruunq (j, i) ≡
∧

k: j<k<i

((tag(rj) 6= tag(rk)) ∨ (set(rj) 6= set(rk))) (8)

Constraints to Formulate Cache Conflict Constraints (5)-(8) accurately capture sce-
narios where rj (j ∈ [1, i)) will create a unique cache conflict to ri. Let us assume Ψevti,j

captures whether rj creates a unique cache conflict to ri. Using the intuition described
in the preceding paragraph, we can now formulate the following constraints to set the
value of Ψevti,j .

Θem,lruj,i ≡
(
ψcnf (j, i) ∧ ψdif (j, i) ∧ ψlrueqv (j, i) ∧ ψlruunq (j, i)

)
⇒
(
Ψevtj,i = 1

)
(9)

If any of the conditions in Constraints (5)-(8) is not satisfied between rj and ri, then
rj cannot influence the cache state immediately before ri and therefore, rj cannot create
cache conflict to ri, as captured by the following constraints:

Θeh,lruj,i ≡
(
¬ψcnf (j, i) ∨ ¬ψdif (j, i) ∨ ¬ψlrueqv (j, i) ∨ ¬ ψlruunq (j, i)

)
⇒
(
Ψevtj,i = 0

)
(10)

Constraints for FIFO Caches Unlike LRU replacement policy, for FIFO replacement
policy, the cache state does not change for a cache hit. Therefore, rj can generate a
cache conflict to ri (where i > j) only if rj is a cache miss.

r1:m1

m1 m2 m1 m2 m1

(miss) (miss) (hit) (hit)

cache conflict

Memory access:

Cache content:

r2:m2 r3:m1 r4:m1 r1:m1

m1 m2 m1 m3 m2

(miss) (miss) (miss) (miss)

cache conflict

r2:m2 r3:m3 r4:m2 r5:m1
(hit)

m3 m2

(a) (b)
Fig. 5. Cache conflict scenarios in FIFO policy. ri:mj captures memory-related instruction ri
accessing memory block mj . The rightmost position in the cache denotes the memory block
inserted in the cache the earliest. (a) r2 generates cache conflict to r4 even thoughm1 is accessed
at r3. This is because r3 is a cache hit. (b) We record cache conflict from r2 to r5 even though r4
is closer to r5 and r5 accesses the same memory block as r2. This is because r4 is a cache hit.

Conditions for eviction misses In order to incorporate the changes in the formulation
of Γ (Ψpath), we need to modify Constraints (7)-(10) for FIFO replacement policy. In
particular, instruction rj can create a unique cache conflict to instruction ri (i > j) only
if rj is a cache miss and the following conditions hold with ψcnf (j, i) and ψdif (j, i):

10 Sudipta Chattopadhyay

1. ψfifoeqv (j, i) : There does not exist any instruction rk, where k ∈ [j + 1, i), such that
rk is a cache miss and it accesses the same memory block as ri. For instance, in
Figure 5(a), r2 generates cache conflict to r4 because r3 was a cache hit. We capture
ψfifoeqv (j, i) as follows:

ψfifoeqv (j, i) ≡
∧

k: j<k<i

((tag(rk) 6= tag(ri)) ∨ (set(rk) 6= set(ri)) ∨ (missk = 0))

(11)
2. ψfifounq (j, i) : This constraint ensures that we only count unique cache conflicts. For

LRU policy, we checked whether rj was the closest instruction to ri accessing mem-
ory block

⌊ σj
2B

⌋
. For FIFO policy, we have a slightly different situation, as demon-

strated in Figure 5(b). Even though r4 is the closest instruction to r5 accessing m2,
r4 cannot generate cache conflict to r5. This is because r4 is a cache hit. As a result,
we record cache conflict from r2 to r5. It is worthwhile to mention that in LRU
policy, we will discard the cache conflict from r2 to r5 due to the presence of r4.
Formally, we ensure there does not exist any instruction rk, where k ∈ [j + 1, i),
such that rk is a cache miss and it accesses the same memory block as rj . Therefore,
ψfifounq (j, i) can be formalized as follows:

ψfifounq (j, i) ≡
∧

k: j<k<i

((tag(rj) 6= tag(rk)) ∨ (set(rj) 6= set(rk)) ∨ (missk = 0))

(12)
Constraints to formulate cache conflict Let us assume Ψevtj,i captures whether rj creates
a cache conflict to ri. For FIFO replacement policy, this is possible only if rj is a cache
miss (i.e. missj = 1). Using the intuition described in the preceding paragraphs, we can
bound the value of Ψevtj,i as follows:

Θem,fifoj,i ≡(
ψcnf (j, i) ∧ ψdif (j, i) ∧ ψfifoeqv (j, i) ∧ ψfifounq (j, i) ∧ (missj = 1)

)
⇒
(
Ψevtj,i = 1

) (13)

Θeh,fifoj,i ≡(
¬ψcnf (j, i) ∨ ¬ψdif (j, i) ∨ ¬ψfifoeqv (j, i) ∨ ¬ψfifounq (j, i) ∨ (missj = 0)

)
⇒
(
Ψevtj,i = 0

)
(14)

Constraints to formulate cache misses Let us assume that missi captures the cache
behaviour of instruction ri. Therefore, missi is set to 1 if ri is a cache miss, and is set
to 0 otherwise. We can formulate the value of missi using the following constraints:

Θmpi ≡

 ∑
j∈[1,i)

Ψevtj,i ≥ A

 ∨Θcoldi (15)

Θmi ≡ Θmpi ⇒ (missi = 1) ; Θhi ≡ ¬Θmpi ⇒ (missi = 0) (16)

where A captures the associativity of the cache. Once a memory block is loaded into
the cache, it requires at least A unique cache conflicts to evict the block. If Ψevti,j ≥ A, ri
has suffered at least A unique cache conflicts since the last access of the memory block
referenced by ri – resulting ri to be a cache miss. If ri is not a cold miss (i.e. ¬Θcoldi

holds) and Ψevti,j ≥ A does not hold, ri will be a cache hit, as captured by Constraint (16).

Directed Automated Memory Performance Testing 11

Putting it all together To derive the symbolic cache behavior Γ (Ψpath), we gather all
constraints over {r1, . . . , rn} as follows:

Γ (Ψpath) ≡
∧

i∈[1,n]

Θmi ∧Θhi ∧ ∧
j∈[1,i)

Θem,replj,i ∧
∧

j∈[1,i)

Θeh,replj,i

 (17)

where repl ∈ {lru, fifo} capturing the underlying replacement policy. Θmi and Θhi to-
gether bound the value of missi, which, in turn captures whether ri is a cache miss.
However, Θmi and Θhi are dependent on symbolic variables Ψevtj,i where j ∈ [1, i).
The bound on symbolic variables Ψevtj,i is captured via Θem,replj,i and Θeh,replj,i (Con-
straints (9)-(10) and Constraints (13)-(14)). Hence, the formulation of Γ (Ψpath) includes
both Θem,replj,i and Θeh,replj,i for j ∈ [1, i).

Complexity of constraints The size of our constraint system is O(n3), where n is the
number of memory accesses. The dominating factor in our constraint system is the
set of constraints generated from Constraints (9)-(10) for LRU policy and from Con-
straints (13)-(14) for FIFO policy. In general, we generate constraints for each pair of
memory accesses that may potentially conflict in the cache, leading to O(n2) pairs in
total. For each such pair, the constraint may have a sizeO(n) — making the size of over-
all constraint system to be O(n3). However, our evaluation reveals that such a bound is
pessimistic and the constraint system can be solved efficiently for real-life programs.

5 Application

In this section, we instantiate Algorithm 1 to formulate the objective OS from the exe-
cution trace S and the refinement of OS (cf. line 23 and lines 31-34 in Algorithm 1).

Testing timing-related properties Embedded and real-time systems are often con-
strained via several timing-related properties. Given a timing deadline D, Algorithm 1
can find a witness where such timing deadline is violated for program P or prove that
no such witness exists.

In this paper, we assume that the timing of a given instruction may vary only due
to the same incurring a cache hit or a cache miss. However, such a timing model can
always be extended leveraging on the rich body of work in timing analysis [21].

Given the execution trace S (cf. Equation (1)), we use the variable missi to capture
whether a memory-related instruction ri suffered a cache miss. Let us assume C is the
time taken to execute all instructions not accessing the memory subsystems. Given the
preceding descriptions, we formulate the objective OS from S as follows:

OS ≡

(
n∑
i=1

missi

)
∗ L+ C > D (18)

where L is the latency incurred for a cache miss and n is the total number of memory-
related instructions. If a solution is found for Γ (Ψpath) ∧ OS ∧ Ψpath using OS in Equa-
tion (18), then we found witness of a violation of timing deadline D. Such a witness can
be used for further investigation and improve the timing behaviour of the system.

12 Sudipta Chattopadhyay

In our evaluation, we refine OS to find unique violations, meaning each test input
capture a unique value of

∑n
i=1missi ∗L+C. Therefore, if

∑n
i=1missi = N is true for

a satisfying solution of Γ (Ψpath) ∧ OS ∧ Ψpath, OS is refined as OS ∧
∑n
i=1missi 6= N .

Testing cache side-channel vulnerabilities The performance gap between cache and
main memory (DRAM) can be exploited by an attacker to discover classified infor-
mation (e.g. a secret key). Such attacks are often non-invasive and they can even be
mounted over the network [8]. In this paper, we choose timing-related attacks, where
the observer monitors the overall cache misses to discover secret information [8].

Let us assume the cache side channel to be a function C : I → O, mapping a finite
set of secret inputs to a finite set of observations. Since the attacker monitors the number
of cache misses, in this scenario, an observation simply captures the number of cache
misses in an execution. If we model the choice of a secret input via a random variable X
and the respective observation by a random variable Y , the leakage through channel C
is the reduction in uncertainty about X when Y is observed. In particular, the following
result holds for any distribution of X [17].

ML(C) ≤ log2 |C(I)| (19)

where ML(C) captures the maximal leakage of channel C. The equality holds in Equa-
tion (19) when X is uniformly distributed.

CATAPULT can be tuned to compute each unique element in the set C(I) and
thereby, to derive an upper bound (exact bound when X is uniformly distributed) on
the maximal leakage ML(C). We accomplish this by setting and refining OS as follows:

OS ≡

(
n∑
i=1

missi ≥ 0

)
(20)

Ifmiss(c)i captures a satisfying solution ofmissi (for i ∈ [1, n]) in Γ (Ψpath)∧OS∧Ψpath,
then we refine OS as follows: OS ∧

(∑n
i=1missi 6=

∑n
i=1miss

(c)
i

)
.

It is worthwhile to mention that the number of tests computed is directly correlated
with the maximal leakage through the cache side channel (cf. Equation (19)). As a
result, our test generation method can be used as a metric to measure the information
leak through cache side channel. Besides, since we also generate an witness for each
possible observation (i.e. the number of cache misses), these witnesses can further be
used for analyzing, quantifying and controlling the information leaked at runtime.

Due to the lack of space, we only show the instantiation for one type of attacker.
However, our framework can model a variety of different attacking scenarios, as long
as the observation by an attacker can be modeled via symbolic constraints over the set
of variables {miss1,miss2, . . . ,missn}.

6 Evaluation

Experimental setup We build CATAPULT on top of KLEE symbolic execution en-
gine [2]. We first decompile PISA [5] compliant binaries (a MIPS like architecture) into

Directed Automated Memory Performance Testing 13

LLVM bitcode. It is worthwhile to note that compiling source code to LLVM bitcode
will inaccurately capture the cache performance. This is because of the target-dependent
compiler optimizations that take place while generating binary code. The decompiled
LLVM bitcode is identical with the PISA binary in terms of functionality, memory
placement and the number of memory-related instructions. This ensures that the trans-
lated LLVM code has exactly the same cache performance as the binary code. To use
CATAPULT for a different architecture (e.g. ARM), we only need the translator that
converts the binary code for the respective architecture to the LLVM bitcode. The rest
of our test generation framework remains completely unchanged. The translated LLVM
code is provided as an input to CATAPULT. All our experiments have been performed
on an Intel I7 machine with 8GB of RAM and running Debian operating system.

To evaluate CATAPULT, we choose cryptographic routines from OpenSSL and
other libraries [3,1] and user-interface routines from Linux GDK library (cf. Table 1).
Our choice is motivated by the importance of validating security and performance re-
lated properties in these programs. Moreover, these programs are memory intensive and
in particular, the cryptographic routines exhibit complex memory access patterns. As a
result, such programs are also appropriate for stress testing our framework.

Program name Input size Lines of C code Lines of LLVM code Max. no. of memory accesses
AES [1] 16 bytes 800 4950 2134
AES [3] 16 bytes 1428 1800 420
DES [3] 8 bytes 552 3990 334
RC4 [3] 10 bytes 160 668 1538
RC5 [3] 16 bytes 256 1820 410

gdk keyval to unicode 4 bytes 1300 268 114
gdk keyval name 4 bytes 1350 1408 12

Table 1. Evaluated subject programs (input sizes are unchanged from the original programs)

Program replacement policy #tests Time (in cycles) maximum no. Testing time
[min,max] of constraints

AES [1] LRU 35 [3719,7619] 2397228 260 min
FIFO 1 [5149,5149] 11578752 15 sec

AES [3] LRU 37 [1796,4996] 26528 127 min
FIFO 1 [1896,1896] 1205860 3 min

DES [3] LRU 21 [3971,6071] 1501080 10 min
FIFO 1 [7971,7971] 1947656 2 sec

RC4 [3] LRU 1 [5553,5553] 337588 15 min
FIFO 1 [3153,3153] 764208 15 sec

RC5 [3] LRU 1 [6167,6167] 0 10 sec
FIFO 1 [6367,6367] 0 10 sec

gdk keyval to unicode LRU 19 [652,2652] 10 13 sec
FIFO 28 [652,4852] 10 12 sec

gdk keyval name LRU 11 [126,1126] 11 18 sec
FIFO 11 [126,1126] 11 18 sec

Table 2. “#test” captures the total number of tests generated, where each test exhibits a unique
cache performance (cf. section 5). Testing time includes the total time to run Algorithm 1.

Basic result Table 2 captures the key result obtained from CATAPULT. For all exper-
iments in Table 2, we used a two-way and 8 KB cache, with 32 bytes cache-line and
a cache-miss latency of 10 cycles. We make the following crucial observations from
Table 2. We observe that the number of tests generated for FIFO policy is significantly
smaller than the number of tests obtained for LRU policy. Since each test is attached
to a unique cache performance (i.e. the number of cache miss), the LRU policy suffers

14 Sudipta Chattopadhyay

from significantly higher cache side-channel leakage (cf. Equation (19)), as compared
to FIFO policy. This happens due to the reason that cache states change more frequently
in LRU policy as compared to FIFO policy (e.g. for every access in LRU policy and for
every cache miss in FIFO policy). This potentially leads to more variation in cache
performance across different inputs in LRU policy, resulting in more tests and higher
cache side-channel leakage. This result indicates important trade-offs in system design,
as LRU policy is, on average, superior compared to FIFO policy in terms of overall
performance. For experiments in Table 2, we can also validate that the maximal leak-
age of a basic AES implementation [3] is comparable with the AES implementation in
the OpenSSL library. The implementation of RC5 does not exhibit any input-dependent
memory access or branch. Hence, the size of our constraint system is 0 and there is
exactly one test generated for both replacement policies. As observed from Table 2,
CATAPULT terminates within reasonable time for all the experiments. Therefore, our
results guarantee both the exact number of test cases and the best/worst-case timing
obtained over all inputs. Finally, it is worthwhile to note that an exhaustive enumeration
(2128 possibilities for AES) of all test inputs is infeasible to provide such guarantees.

 0

 10

 20

 30

 40

 50

2-way, 8KB

4-way, 8KB

2-way, 16 KB

4-way, 16KB

2-way, 32 KB

4-way, 32 KB

2-way, 64 KB

4-way, 64 KB

#t
es

ts

No. of generated tests for varying cache size (LRU)

AES from basic crypto
AES from OpenSSL

DES

RC4
GDK

 0

 5

 10

 15

 20

 25

2-way, 8KB

4-way, 8KB

2-way, 16 KB

4-way, 16KB

2-way, 32 KB

4-way, 32 KB

2-way, 64 KB

4-way, 64 KB

#t
es

ts

No. of generated tests for varying cache size (FIFO)

AES from basic crypto
AES from OpenSSL

DES

RC4
GDK

Fig. 6. Number of tests w.r.t. different cache configurations

Sensitivity result Figure 6 shows the sensitivity of CATAPULT with respect to cache
configurations. Although increasing cache size usually improves performance, this may
not be true for security. As an example, a smaller cache may result in cache misses for
all possible inputs (i.e. one test), whereas a bigger cache may result in cache misses for
a subset of inputs (i.e. more than one test). As a result, increasing the cache size may
lead to increased number of tests and hence, increased likelihood of cache side-channel
leakage (cf. Equation (19)). For a huge cache, however, the dependency between inputs
and the cache behaviour may disappear, resulting in reduced cache side-channel leak-
age. In Figure 6, we observe both the increase and the decrease in the number of tests
(and hence, the maximal leakage) with increased cache size. We also observe that FIFO
policy on average outperforms LRU policy, in terms of side-channel resistant.

Summary In summary, CATAPULT reveals useful information regarding the memory
performance of programs. This includes the cache side-channel vulnerability of these
programs as well as their worst-case memory performance. Concretely, we can show,
for most of the chosen subjects, FIFO replacement policy is significantly more resistant
to cache side channel as compared to LRU policy. We also show that increasing cache
size may not necessarily lead to a more secure implementation (cf. Figure 6).

Directed Automated Memory Performance Testing 15

7 Related Work

Works on worst-case execution time (WCET) analysis [20,21] compute an upper bound
on the execution time of program. In addition, approaches based on program synthe-
sis [9] aim to generate optimal software by construction. In contrast to these works,
our approach has a significant flavor of testing and CATAPULT is used to generate wit-
nesses violating certain non-functional properties. Our work is orthogonal to the efforts
in statically analyzing cache side channels [17,14,7]. Specifically, CATAPULT gener-
ates test inputs that violate timing-related constraints and to quantify cache side-channel
leakage. Our framework does not generate false positives, however, it is not aimed to
verify the absence of cache side-channel leaks and timing-related violations.

Recent works on performance testing [16,18,19] consider performance purely at
code level and ignore any influence of execution platform on performance. Our previous
works had targeted specific performance bugs (e.g. cache thrashing [6]) and they do not
consider the variation of memory performance within a program path [6,13,11].

In summary, a majority of works in software testing have either focused on function-
ality bugs or ignore the influence of execution platforms on non-functional properties.
In this paper, we propose to systematically explore the behaviour of execution platform
via dynamic symbolic execution, with a specific focus on memory performance.

8 Discussion

Extensions and limitations CATAPULT generates witnesses to show the evidence of
side-channel leakage or timing-related faults. However, it does not debug these faults.
Debugging faults related to software non-functional properties (e.g. timing and secu-
rity) is a challenging research problem in its own right and CATAPULT provides the
necessary foundation for debugging research in the context of timing or security-related
faults. A limitation of our approach is the requirement of the knowledge of cache ar-
chitecture (e.g. cache replacement policy). In the future, this limitation can be lifted via
using some machine learning approach to approximately capture the cache replacement
policy [4]. Subsequently, we can formulate the test generation problem via symbolic
constraints in a similar fashion as in CATAPULT. The scalability of CATAPULT is pri-
marily limited by the number of memory accesses in an execution. Since our symbolic
constraints encode the cache conflict (and not the actual cache states), the scalability of
CATAPULT is not affected by increased cache sizes and associativity [10].

Perspective We have presented CATAPULT where the key insight is to express the
platform-dependent software properties (e.g. performance and security) via logical con-
straints. Hence, our approach can be adapted easily within existing software testing
methodologies based on symbolic execution. To show the generality of our approach,
we have instantiated our framework for a variety of cache designs and shown its appli-
cation in both performance and security testing via real-life case studies (e.g. including
OpenSSL and Linux GDK applications). This makes the idea of CATAPULT quite ap-
pealing for further exploration in the future. Among others, techniques to improve the
testing time and extension of CATAPULT for regression testing are worth exploring in
the area of testing non-functional software properties.

16 Sudipta Chattopadhyay

Acknowledgement We thank Ezekiel Olamide Soremekun and the anonymous review-
ers for insightful feedback on an earlier version of this paper.

References

1. Advanced Encryption Standard Implementation. https://github.com/B-Con/
crypto-algorithms.

2. KLEE LLVM execution engine. https://klee.github.io/.
3. OpenSSL Library. https://github.com/openssl/openssl/tree/master/

crypto.
4. Andreas Abel and Jan Reineke. Measurement-based modeling of the cache replacement

policy. In RTAS, pages 65–74, 2013.
5. Todd Austin, Eric Larson, and Dan Ernst. SimpleScalar: An infrastructure for computer

system modeling. Computer, 35(2), 2002.
6. Abhijeet Banerjee, Sudipta Chattopadhyay, and Abhik Roychoudhury. Static analysis driven

cache performance testing. In RTSS, pages 319–329, 2013.
7. Gilles Barthe, Gustavo Betarte, Juan Diego Campo, Carlos Daniel Luna, and David

Pichardie. System-level non-interference for constant-time cryptography. In CCS, pages
1267–1279, 2014.

8. Daniel J Bernstein. Cache-timing attacks on AES, 2005.
9. Pavol Cerný, Krishnendu Chatterjee, Thomas A. Henzinger, Arjun Radhakrishna, and Rohit

Singh. Quantitative synthesis for concurrent programs. In CAV, pages 243–259, 2011.
10. Sudipta Chattopadhyay. Directed Automated Memory Performance Testing. http://

sudiptac.bitbucket.org/papers/catapult-TR.pdf.
11. Sudipta Chattopadhyay. MESS: memory performance debugging on embedded multi-core

systems. In SPIN, pages 105–125, 2015.
12. Sudipta Chattopadhyay, Moritz Beck, Ahmed Rezine, and Andreas Zeller. Quantifying the

information leak in cache attacks through symbolic execution. CoRR, abs/1611.04426, 2016.
13. Sudipta Chattopadhyay, Petru Eles, and Zebo Peng. Automated software testing of memory

performance in embedded gpus. In EMSOFT, pages 17:1–17:10, 2014.
14. Goran Doychev, Boris Köpf, Laurent Mauborgne, and Jan Reineke. CacheAudit: a tool for

the static analysis of cache side channels. TISSEC, 18(1):4, 2015.
15. Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed automated random

testing. In PLDI, 2005.
16. Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. Understanding and

detecting real-world performance bugs. In PLDI, 2012.
17. Boris Köpf, Laurent Mauborgne, and Martı́n Ochoa. Automatic quantification of cache side-

channels. In CAV. Springer, 2012.
18. Adrian Nistor, Linhai Song, Darko Marinov, and Shan Lu. Toddler: detecting performance

problems via similar memory-access patterns. In ICSE, pages 562–571, 2013.
19. Oswaldo Olivo, Isil Dillig, and Calvin Lin. Static detection of asymptotic performance bugs

in collection traversals. In PLDI, pages 369–378, 2015.
20. Henrik Theiling, Christian Ferdinand, and Reinhard Wilhelm. Fast and precise WCET pre-

diction by separated cache and path analyses. Real-Time Systems, 18(2-3), 2000.
21. Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,

David B. Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mi-
tra, Frank Mueller, Isabelle Puaut, Peter P. Puschner, Jan Staschulat, and Per Stenström. The
worst-case execution-time problem - overview of methods and survey of tools. ACM Trans.
Embedded Comput. Syst., 7(3), 2008.

https://github.com/B-Con/crypto-algorithms
https://github.com/B-Con/crypto-algorithms
https://klee.github.io/
https://github.com/openssl/openssl/tree/master/crypto
https://github.com/openssl/openssl/tree/master/crypto
http://sudiptac.bitbucket.org/papers/catapult-TR.pdf
http://sudiptac.bitbucket.org/papers/catapult-TR.pdf

18 Sudipta Chattopadhyay

Appendix

In this section, we illustrate the construction of our symbolic cache model for a two-
way set-associative cache. Let us assume that we execute the code in Figure 2(a) for
input x = 0. This results in the execution of the if branch. After the execution, we record
the path condition and the execution trace as follows:

Ψpath ≡ (x ≥ 0 ∧ x ≤ 127) (22)

S ≡ 〈(r1,&p+ 127− x), (r2,&q + x), (r3,&p+ 127− x)〉 (23)

In an abuse of notation, we use @R to capture the memory block containing address
&R. For instance, @p[127 − x] captures the memory block containing address &p +

127 − x. Recall that we use missi to capture whether the instruction ri suffers a cache
miss. Starting with an empty cache, r1 is a cold miss and therefore, miss1 = 1. In the
following, we formulate the constraints to bound miss2 and miss3.

Constraints to bound miss2

In order to check whether r2 is a cold miss, we need to check that r2 accesses the
memory block @q[x] for the first time. This can be accomplished by examining the
satisfiability of the following constraint (cf. Constraint (5)):

Θcold2 ≡ (tag(r1) 6= tag(r2)) ∨ (set(r1) 6= set(r2)) (24)

Since only r1 is accessed before r2, only r1 can potentially generate cache conflict
to r2. The following constraints must be satisfied if r1 generates cache conflict to r2 (cf.
Constraints (6)-(7)).

ψcnf (1, 2) ≡ set(r1) = set(r2) (25)

ψdif (1, 2) ≡ tag(r1) 6= tag(r2) (26)

Constraints for LRU caches Since there does not exist any memory access between
r1 and r2, memory blocks @q[x] and @p[127 − x] cannot be accessed between r1 and
r2. Therefore, both ψlrueqv(1, 2) and ψlruunq(1, 2) are trivially evaluated to true (cf. Con-
straints (8)-(9)). As a result, we bound the value ofmiss2 by combining constraints (24)-
(26) as follows (cf. Constraints (10)-(11) and Constraints (16)-(17)):

ψcnf (1, 2) ∧ ψdif (1, 2)⇒
(
Ψevt1,2 = 1

)
(27)

¬ψcnf (1, 2) ∨ ¬ψdif (1, 2)⇒
(
Ψevt1,2 = 0

)
(28)

(
Ψevt1,2 ≥ 2

)
∨Θcold2 ⇒ (miss2 = 1) (29)

(
Ψevt1,2 < 2

)
∧ ¬Θcold2 ⇒ (miss2 = 0) (30)

Directed Automated Memory Performance Testing 19

Constraints for FIFO caches For caches with FIFO replacement policy, ψfifoeqv (1, 2)

and ψfifounq (1, 2) are also evaluated to true (cf. Constraints (12)-(13)), as there does not
exist any memory access between r1 and r2. However, since FIFO cache states are only
changed during a cache miss, we need to modify constraints (27)-(28) as follows (cf.
Constraints (14)-(15):

ψcnf (1, 2) ∧ ψdif (1, 2) ∧ (miss1 = 1)⇒
(
Ψevt1,2 = 1

)
(31)

¬ψcnf (1, 2) ∨ ¬ψdif (1, 2) ∨ (miss1 = 0)⇒
(
Ψevt1,2 = 0

)
(32)(

Ψevt1,2 ≥ 2
)
∨Θcold2 ⇒ (miss2 = 1) (33)(

Ψevt1,2 < 2
)
∧ ¬Θcold2 ⇒ (miss2 = 0) (34)

Constraints to bound miss3

In order to check whether r3 is a cold miss, we need to ensure neither r1 nor r2 loads
the memory block @p[127 − x]. This can be done by checking the satisfiability of the
following constraint:

Θcold3 ≡ (tag(r1) 6= tag(r3) ∨ set(r1) 6= set(r3))∧
(tag(r2) 6= tag(r3) ∨ set(r2) 6= set(r3))

(35)

It is worthwhile to note that Θcold3 is unsatisfiable. This is because r1 and r3 both ac-
cesses the same memory block @p[127 − x] and therefore, both tag(r1) 6= tag(r3) and
set(r1) 6= set(r3) are evaluated to false.

Necessary conditions for cache conflict Both r1 and r2 may generate cache conflict
to r3. The following necessary conditions must hold for r1 and r2 to generate cache
conflict to r3:

ψcnf (1, 3) ≡ set(r1) = set(r3) (36)

ψdif (1, 3) ≡ tag(r1) 6= tag(r3) (37)

ψcnf (2, 3) ≡ set(r2) = set(r3) (38)

ψdif (2, 3) ≡ tag(r2) 6= tag(r3) (39)

Constraints for LRU caches Since r2 is accessed between r1 and r3, we need to
ensure that r2 does not reload memory block accessed by r3 (i.e. @p[127 − x]). This is
accomplished via the following constraint:

ψlrueqv(1, 3) ≡ (tag(r2) 6= tag(r3) ∨ set(r2) 6= set(r3)) (40)

Finally, we check that r2 does not access the same memory block accessed by r1 (i.e.
@p[127−x]). This is to avoid counting duplicate cache conflicts from the same memory
block. ψlruunq(1, 3) ensures that r1 does not access the same memory block accessed by
r2.

ψlruunq(1, 3) ≡ (tag(r1) 6= tag(r2) ∨ set(r1) 6= set(r2)) (41)

It is worthwhile to note that both ψlruunq(2, 3) and ψlrueqv(2, 3) are trivially true, as there
does not exist any memory access between r2 and r3.

20 Sudipta Chattopadhyay

In order to bound the value of miss3, we gather the aforementioned constraints in
the following formulation:

ψcnf (1, 3) ∧ ψdif (1, 3) ∧ ψlrueqv(1, 3) ∧ ψlruunq(1, 3)⇒
(
Ψevt1,3 = 1

)
(42)

¬ψcnf (1, 3) ∨ ¬ψdif (1, 3) ∨ ¬ψlrueqv(1, 3) ∨ ¬ψlruunq(1, 3)⇒
(
Ψevt1,3 = 0

)
(43)

ψcnf (2, 3) ∧ ψdif (2, 3)⇒
(
Ψevt2,3 = 1

)
(44)

¬ψcnf (2, 3) ∨ ¬ψdif (2, 3)⇒
(
Ψevt2,3 = 0

)
(45)

(
Ψevt1,3 + Ψevt2,3 ≥ 2

)
∨Θcold3 ⇒ (miss3 = 1) (46)(

Ψevt1,3 + Ψevt2,3 < 2
)
∧ ¬Θcold3 ⇒ (miss3 = 0) (47)

Constraints for FIFO caches As explained in the construction of ψfifoeqv (i, j) and
ψfifounq (i, j) (cf. Constraints (12)-(13)), we need additional constraints to reflect that cache
states are only changed for cache misses. In particular, ψfifoeqv (1, 3) and ψfifoeqv (1, 3) are
formulated as follows:

ψfifoeqv (1, 3) ≡ (tag(r2) 6= tag(r3) ∨ set(r2) 6= set(r3) ∨miss2 = 0) (48)

ψfifounq (1, 3) ≡ (tag(r1) 6= tag(r2) ∨ set(r1) 6= set(r2) ∨miss2 = 0) (49)

Like LRU policy, we note that both ψfifounq (2, 3) and ψfifoeqv (2, 3) are trivially true, as
there does not exist any memory access between r2 and r3.

Finally, we record cache conflict from r1 (or r2) to r3 only if r1 (or r2) is a cache
miss, meaning miss1 = 1 (or miss2 = 1). This is accomplished via the following
constraints:

ψcnf (1, 3) ∧ ψdif (1, 3) ∧ ψfifoeqv (1, 3) ∧ ψfifounq (1, 3) ∧ (miss1 = 1)⇒
(
Ψevt1,3 = 1

)
(50)

¬ψcnf (1, 3)∨¬ψdif (1, 3)∨¬ψfifoeqv (1, 3)∨¬ψfifounq (1, 3)∨(miss1 = 0)⇒
(
Ψevt1,3 = 0

)
(51)

ψcnf (2, 3) ∧ ψdif (2, 3) ∧ (miss2 = 1)⇒
(
Ψevt2,3 = 1

)
(52)

¬ψcnf (2, 3) ∨ ¬ψdif (2, 3) ∨ (miss2 = 0)⇒
(
Ψevt2,3 = 0

)
(53)

(
Ψevt1,3 + Ψevt2,3 ≥ 2

)
∨Θcold3 ⇒ (miss3 = 1) (54)(

Ψevt1,3 + Ψevt2,3 < 2
)
∧ ¬Θcold3 ⇒ (miss3 = 0) (55)

Summary Constraints to bound miss2 and miss3, together with the fact miss1 = 1

capture our symbolic cache model Γ (x ≥ 0 ∧ x ≤ 127). This model is explored during
symbolic execution to discover all possible cache behaviour in a program.

Test Generation Time

Tables 3-4 report the time needed to generate all tests using CATAPULT.

Directed Automated Memory Performance Testing 21

Testing time (in seconds)
Program name 4-way, 8KB 2-way, 16KB 4-way, 16KB 2-way, 32KB 4-way, 32KB 2-way, 64KB 4-way, 64KB

AES [1] 22917 1720 16971 2006 2190 496 2581
AES [3] 442 484 4125 7409 472 98 626
DES [3] 11193 2657 762 138 376 134 130
RC4 [3] 1030 993 989 955 995 888 952
RC5 [3] 14 14 14 14 14 14 14

gdk keyval to unicode 14 13 14 14 14 14 14
gdk keyval name 18 18 17 18 18 18 19

Table 3. Testing time for LRU replacement policy

Testing time (in seconds)
Program name 4-way, 8KB 2-way, 16KB 4-way, 16KB 2-way, 32KB 4-way, 32KB 2-way, 64KB 4-way, 64KB

AES [1] 15 15 68 15 14 14 14
AES [3] 750 14 209 2 14 2 2
DES [3] 56 2 2 2 2 2 889
RC4 [3] 16 16 68 18 15 15 18
RC5 [3] 14 15 15 15 15 15 15

gdk keyval to unicode 13 14 13 14 14 14 14
gdk keyval name 18 18 18 19 18 18 18

Table 4. Testing time for FIFO replacement policy

	Directed Automated Memory Performance Testing
	Introduction
	Background and Overview
	Test Generation
	Generating (path)
	Modeling Symbolic Cache Access
	Modeling Symbolic Cache Constraints
	Constraints for LRU caches
	Constraints for FIFO Caches
	Constraints to formulate cache misses
	Putting it all together

	Application
	Evaluation
	Related Work
	Discussion

