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Cache attacks allow attackers to infer the properties of a secret execution by observing cache hits and misses.

But how much information can actually leak through such attacks? For a given program, a cache model, and

an input, our CHALICE framework leverages symbolic execution to compute the amount of information that

can possibly leak through cache attacks. At the core of CHALICE is a novel approach to quantify information

leakage that can highlight critical cache side-channel leakage on arbitrary binary code. In our evaluation

on real-world programs from OpenSSL and Linux GDK libraries, CHALICE effectively quantifies information

leakage: For an AES-128 implementation on Linux, for instance, CHALICE finds that a cache attack can leak as

much as 127 out of 128 bits of the encryption key.
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1 INTRODUCTION
Cache attacks [11] are among the best known side channel attacks [26] to determine secret features

of a program execution without knowing its input or output. Cache attacks can be timing-based [11]

or access-based [30]. The general idea of a timing attack is to observe, for a known program, a

timing of cache hits and misses, and then to use this timing to determine or constrain features of the

program execution, including secret data that is being processed. Similarly, for access-based cache

attacks, an observer monitors, for a known program, the specific cache lines being accessed. Then,

such information is used to determine the input processed by the respective program. Recent cache

attacks [33] show that access-based attacks are practical even in commodity embedded processors,

such as in ARM-based embedded systems.

The precise nature of the information that can leak through such attacks depends on the cache

and its features, as well as the program and its features. Consequently, given a model of the cache

and a program run, it is possible to analyze which and how much information would leak through

a cache attack. This is what we do in this paper. Given a program execution and a cache model, our
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CHALICE approach automatically determines which bits of the input would actually leak through a
potential cache attack.

As an example, consider an implementation of the popular AES encryption algorithm. Given an

input and an encryption key (say, 128 bits for AES-128), CHALICE can determine which and how

many of the bits of the key would leak if the execution were subject to a cache attack. To this end,

CHALICE uses a novel symbolic execution over the given concrete input. During symbolic execution,

CHALICE derives symbolic timings of cache hits and misses; these then again reveal under which

circumstances individual bits of encryption key may leak through timing attacks. For access-based

attacks, CHALICE symbolically computes the number of cache lines accessed in each cache set. This

is, then, used to derive which bits of encryption key may leak through an access-based cache attack.
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Fig. 1. For a fixed inputmessage, the plot shows
the number of keys leading to a given number
of cache misses incurred by executing AES-128
encryption (sample size = 256000 keys)

The reason why CHALICE works is that the tim-

ings of cache hits and misses, as well as the cache

access patterns, are not uniformly distributed; and

therefore, some specific timings and cache access pat-

terns may reveal more information than others. Fig-

ure 1 demonstrates the execution of an AES-128 imple-

mentation [3] for a fixed input and 256,000 different

keys, inducing between 213 and 279 cache misses. We

see that the distribution of cache misses is essentially

Gaussian; if the number of cache misses is average,

there are up to 13,850 keys which induce this very

cache timing. If we have an extreme cache timing

with 213 misses (the minimum) or 279 misses (the

maximum), then there are only 2 keys that induce this

very timing. CHALICE can determine that for these keys, 90 of 128 bits would leak if the execution

were subjected to a cache attack, which in practice would mean that the remaining 38 bits could be

guessed through brute force—whereas other “average” keys would be much more robust. For each

key and input, CHALICE can precisely predict which bits would leak, allowing its users to determine

and find the best alternative.

It is this precision of its symbolic analysis that sets CHALICE apart from the state of the art. Existing

works [23, 32] use static analysis alone to provide an upper bound on the potential number of

different observations that an attacker can make. This upper bound, however, does not suffice to

choose between alternatives, as it ignores the distribution of inputs: It is possible that certain inputs

may leak substantially more information than others. Not only that such an upper bound might

be imprecise, it is also incapable to identify inputs that exhibit substantial information leakage

through side channels. Given a set of inputs (typically as part of a testing pipeline), CHALICE can
precisely quantify the leakage for each input, and thus provide a full spectrum that characterizes

inputs with respect to information leakage.

The remainder of this paper is organized as follows. After giving an overview on CHALICE
(section 2), we make the following contributions:

(1) We present CHALICE, a new approach to precisely quantify information leakage in execution
and its usage in software testing (section 3).

(2) We introduce a symbolic cache model to handle various cache configurations and instantiate

CHALICE to detect cache side channel leakage (section 4). This is the first usage of symbolic

execution to quantify information leakage by relating cache and program states.

(3) We demonstrate generalizations across multiple observer models (section 5).
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/* k is sensitive input */ 
char p[256]; 
unsigned char k;   
char q[256]; 

/*load*/ reg1=p[k] 
if (k <= 127) 
/*load*/  reg2=q[255-k] 

else 
/*load*/  reg2=q[k-128] 

/*add*/   reg1=reg1+reg2 
/*store*/ p[k]=reg1

k=0 {<m,m,m>}

1 ≤ k ≤ 255 {<m,m,h>} 

/* k is sensitive input */ 
char p[256]; 
unsigned char k;   
char q[256]; 

/*load*/ reg1=q[255] 
if (k <= 127) 
/*load*/  reg2=p[k%2] 

else 
/*load*/  reg2=p[128*(k%2)] 

/*add*/   reg1=reg1+reg2 
/*store*/ q[255]=reg1

k%2=0 {<m,m,m>} 

k%2=1 {<m,m,h>} 

/* k is sensitive input */ 
char p[256]; 
unsigned char k;   
char q[256]; 

if (k <= 127) 
/*load*/  reg2=q[255-k] 

else 
/*load*/  reg2=q[k-128] 

/*load*/  reg1=p[k] 
/*add*/   reg1=reg1+reg2 
/*store*/ p[k]=reg1

0 ≤ k ≤ 255 {<m,m,h>} 

p[0], q[255]
p[1]

k
q[0]
q[1]

q[254]
Cache

256 bytes

256 bytes

p[255]

set(&p[0])=0

set(&p[1])=1

set(&q[254]) 
=511

set(&q[255]=0

(a) (b) (c) (d)
Fig. 2. k is a sensitive input. (a)-(c) three code fragments and respective partitions of the input space with
respect to cache hit/miss sequence (reд1, reд2 represent registers), (d) mapping of program variables into a
512-byte direct-mapped cache (q[255] and p[0] conflict in the cache)

(4) We provide an implementation based on LLVM and the KLEE symbolic virtual machine.

Source code of CHALICE and all experimental data is publicly available: https://bitbucket.org/

sudiptac/chalice

(5) We evaluate our CHALICE approach (section 6) to show how we quantify the information

leaked through execution in several libraries, including OpenSSL and Linux GDK libraries,

and show that the information leakage can be as high as 127 bits (out of 128 bits) for certain

implementations [3] of AES-128.

After discussing related work (section 7), we close with conclusion and consequences (section 8).

2 OVERVIEW
In this section, we convey the key insight behind our approach through examples. In particular,

we illustrate how CHALICE is used to quantify information leakage from the execution trace of a

program.

Motivating Example. Let us assume that our system contains a direct-mapped data cache of size

512 bytes. Figures 2(a)-(c) show different code fragments executed in the system. For the sake of

clarity, we use source-level syntaxes. Also for clarity, we assume that conditional checks, in this

example, do not involve any access to the data cache (i.e. k is assigned to a register). However, it is

worthwhile to note that our framework CHALICE handles arbitrary execution traces and it handles

all instructions with arbitrary cache behaviours. The mapping of different variables into the cache

is shown in Figure 2(d). Let us assume that the code fragments of Figures 2(a)-(c) are executed

with some arbitrary (and unknown) value of k . Broadly, CHALICE answers the following question:
Provided only the cache performance (e.g. cache hit/miss sequence) from such executions, how much
information about the sensitive input k is leaked?

The cache performance induces a partition on the program input space. Let us capture the cache

performance via a sequence of hits (h) and misses (m). In Figure 2(a), for all values of k between 0

and 127, we observe two cache misses due to the first two memory accesses, p[k] and q[255 − k],
respectively. The second access to p[k] is a cache hit, for k ∈ [1, 127]. However, if k = 0, the content

of p[k] will be replaced by q[255 − k], resulting in a cache miss at the second access of p[k]. For
k ∈ [128, 255], p[k] is never replaced once it is loaded into the cache. Therefore, the second access

to p[k] is a cache hit for k ∈ [128, 255]. In other words, we observe the sequence of cache hits and

misses to induce the following partition on the input space: k = 0 (hit/miss sequence = ⟨m,m,m⟩)

and k ∈ [1, 255] (hit/miss sequence = ⟨m,m,h⟩). A similar exercise for the code in Figure 2(b)

results in the following partition of the sensitive input space: k ∈ [0, 255] ∧ (k mod 2 = 0) (hit/miss

sequence = ⟨m,m,m⟩) and k ∈ [0, 255] ∧ (k mod 2 , 0) (hit/miss sequence = ⟨m,m,h⟩).
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Key observation. In this work, we stress the importance of quantifying information leakage from
execution traces and not from the static representation of a program. To illustrate this, consider the

input partitions created for code fragments in Figures 2(a)-(b). We emphasize that observing the

cache hit/miss sequence ⟨m,m,m⟩, from an execution of the code fragment in Figure 2(a), results in

complete disclosure of sensitive input k . On the contrary, observing the sequence ⟨m,m,m⟩, from

an execution of the code fragment in Figure 2(b), will only reveal the information that k is odd. Such
information still demands a probability of

1/128 in order to correctly guess k at first attempt. This is

in contrast to accurately guessing the correct value of k at first attempt (as happened through the

sequence ⟨m,m,m⟩ for Figure 2(a)). In order to fix the cache side-channel leakage in Figure 2(a),

we can reorder the code as shown in Figure 2(c).

Limitations of static analysis. Existing works in static analysis [23, 32] correlate the number of

possible observations (by an attacker) with the number of bits leaked through a side channel. We

believe this view can be dangerous. Indeed, both code fragments in Figures 2(a)-(b) have exactly

two possible cache hit/miss sequences (hence, observations), for arbitrary values of k . Therefore,
approaches based on static analysis [23, 32] will consider these two code fragments equivalent in
terms of cache side-channel leakage. As a result, a crucial information leakage scenario, such as the

execution of code fragment in Figure 2(a) with k = 0, will go completely unnoticed. Techniques

based on verifying that programs execute in constant time typically check that memory accesses

do not depend on sensitive inputs [7, 9]. Yet, most implementations do not execute in constant time.

Besides, programs such as in Figure 2(c) have accesses that may depend on sensitive inputs without

leaking information about it to a cache-performance observer. Hence, we track the relationship

between input and cache performance through a symbolic model of the cache.

The usage of CHALICE. CHALICE is aimed to be used for validating security properties of software.

Given a test suite (i.e. a set of concrete test inputs) for the software, CHALICE is used to quantify

the information leaked for each possible observation obtained from this test suite. In our earlier

works [17] [10], we have shown how such an effective test suite can be generated automatically.

Since the observation by an attacker (e.g. number of cache misses) corresponds to a (set of) test

input(s), CHALICE presents how much can be deduced about such inputs from the respective

observation. In other words, our framework CHALICE fits the role of a test oracle in the software

validation process. For instance, if CHALICE reports substantial information leakage, the test inputs

leading to the respective observation should be avoided (e.g. avoiding a “weak" encryption key) or

the program needs to be restructured to avoid such information leakage.

How CHALICE works. Let us assume that we execute the code in Figure 2(a) with some input

I ∈ [0, 255] and observe the trace tI ≡ ⟨m,m,m⟩. Given only the observation tI , CHALICE quantifies
how much information about program input I is leaked. CHALICE symbolically executes the program

and it tracks all memory accesses dependent on the sensitive inputk . Concretely, CHALICE constructs
Γ(0 ≤ k ≤ 127) and Γ(128 ≤ k ≤ 255), which encode all cache hit/miss sequences for inputs

satisfying 0 ≤ k ≤ 127 and 128 ≤ k ≤ 255, respectively. While exploring the path for inputs

k ∈ [0, 127], we record a sequence of symbolic memory addresses ⟨&p[k],&q[255 − k],&p[k]⟩,
where &x denotes the address of value x . Since we started execution with an empty cache, the first

access to p[k] inevitably incurs a cache miss, irrespective of the value of k . The subsequent accesses
can be cache hits, cold misses (first access to the respective cache line) or eviction misses (non-first

access to the respective cache line). For instance, we check whether the “store” instruction suffers

a cold data-cache miss as follows:

(0 ≤ k ≤ 127) ∧ (set(&p[k]) , set(&q[255 − k])) ∧ (set(&p[k]) , set(&p[k])) (1)
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where set(&x) captures the cache line where memory address &x is mapped to. Intuitively, the

constraint checks whether access to p[k] (via the “store” instruction) touches a cache line for the
first time. Constraint (1) is clearly unsatisfiable, leading to the fact that the “store” instruction
does not access a cache line for the first time during execution.

Subsequently, we check whether the second access to p[k] can suffer an eviction miss. To this

end, we check whether q[255 − k] can evict p[k] from the cache as follows:

(0 ≤ k ≤ 127) ∧ (set(&p[k]) = set(&q[255 − k])) ∧ (taд(&p[k]) , taд(&q[255 − k])) (2)

where taд(&x) captures the cache tag associated with the accessed memory block. Intuitively,

Constraint (2) is satisfied if and only if q[255 − k] accesses a different memory block as compared

to p[k], but q[255 − k] and p[k] access the same cache line (hence, causing an eviction before p[k]
was accessed for the second time). In this way, we collect Constraints (1)-(2) to formulate the cache

behaviour of a memory access into Γ(0 ≤ k ≤ 127).

After constructing Γ(0 ≤ k ≤ 127), we explore the path for inputs k ∈ [128, 255] and record the

sequence of memory accesses p[k], q[k − 128] and p[k]. Performing a similar exercise, we can show

that the second access to p[k] cannot be a cold miss along this path. In order to check whether the

second access to p[k] was an eviction miss along this path, we check whether q[k − 128] can evict

p[k] from the cache as follows:

(128 ≤ k ≤ 255) ∧ (set(&p[k]) = set(&q[k − 128])) ∧ (taд(&p[k]) , taд(&q[k − 128])) (3)

Constraint (3) is used to formulate Γ(128 ≤ k ≤ 255) and is unsatisfiable. This is because only

p[0] shares a cache line with q[255] (i.e. set(&p[0]) = set(&q[255])) and therefore, set(&p[k]) =
set(&q[k − 128]) is evaluated false for 128 ≤ k ≤ 255. As a result, the second access to p[k] is not a
cache miss for any input k ∈ [128, 255].
From the observation ⟨m,m,m⟩, we know that the second access to p[k] was a miss. From the

discussion in the preceding paragraph, we also know that this observation cannot occur for any

inputs k ∈ [128, 255]. Therefore, the value of k must result in Constraint (2) satisfiable. Constraint (2)

is unsatisfiable if we restrict the value of k between 1 and 127. This happens based on the fact

that only p[0] is accessed from the same cache line as q[255] (cf. Figure 2(d)). As a result, CHALICE
reports 255 (127 for the if branch and 128 for the else branch in Figure 2(a)) values being leaked

for the observation ⟨m,m,m⟩. In other words, CHALICE accurately reports the information leakage

(i.e. k = 0) for the observation ⟨m,m,m⟩.

CHALICE for debugging. In the preceding discussion, we observed that CHALICE reported accurate
information leakage by checking the cache miss behaviour of the store instruction only. Conse-

quently, a developer can invest more attention in fixing the leakage through the store instruction,

such as forcing the store to be a cache hit for all inputs. As observed in Figure 4(c), such a fix

involves moving the first load instruction in Figure 4(a). We note, however, that CHALICE does not

provide capabilities to automatically fix cache side channels.

Relation to entropy. In the preceding example, CHALICE computes the number of impossible

values of k , for a given observation. This, in turn, can be used to compute the uncertainty to guess

k , provided the respective observation occurred. For instance, if the attacker observes the sequence

⟨m,m,m⟩, then the uncertainty to guess k is 0 bits (as exactly one value of k is possible for this

observation). If we assume that k was uniformly distributed, the initial uncertainty to guess k was

8 bits (since k is an 8-bit input in the example). This leads to a reduced uncertainty of 8 bits when

the sequence ⟨m,m,m⟩ was observed by the attacker.

3 FRAMEWORK
In this section, we formally introduce the core capabilities implemented within CHALICE.
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3.1 Foundation
3.1.1 Threat model. Side-channel attacks are broadly classified into synchronous and asynchro-

nous attacks [41]. In a synchronous attack, an attacker can trigger the processing of known inputs

(e.g. a plain-text or a cipher-text for encryption routines), whereas such a possibility is not available

for asynchronous attacks. Synchronous attacks are clearly easier to perform, since the attacker

does not need to infer the start and end of the targeted routine under attack. For instance, in a

synchronous attack, the attacker can trigger encryption of known plaintext messages and observe

the encryption-timing [11]. Since CHALICE is a software validation tool with the aim of producing

side-channel resistant implementations, we assume the presence of a strong attacker in this paper.

Therefore, we consider the attacker can request and observe the execution (e.g. number of cache

misses) of the targeted routine. We also assume that the attacker can execute arbitrary user-level

code on the same processor running the targeted routine. This allows the attacker to flush the

cache before the targeted routine starts execution and therefore, reduce the external noise in the

observation. The attacker, however, is incapable of accessing the address space of the target routine.

3.1.2 Notations. The execution of program P on input I results in an execution trace tI . tI is a
sequence over the alphabet Σ = {h,m} where h (respectively,m) represents a cache hit (respectively,

cache miss). Our proposed method in CHALICE quantifies the information leaked through tI . We

capture this quantification via L(tI ). We assess the information leakage with respect to an observer.
An observer is a mapping O : Σ∗ → D where D is a countable set. For instance, an observer

O : Σ∗ → N can count the number of misses and will associate both sequences ⟨m,h,m,h,h⟩ and
⟨m,m,h,h,h⟩ to 2. It will therefore not differentiate them. The most precise observer would be the

identity mapping on Σ∗
. However, an observer that tracks prefixes of length two would be capable

of differentiating ⟨m,h,m,h,h⟩ and ⟨m,m,h,h,h⟩.
We use the 0-1 variablemissi to capture the cache miss behaviour of the i-th memory access.

The observation by an attacker, over the execution for an arbitrary input and according to the

observer model O, is considered via the observation constraint ΦO . ΦO is a symbolic constraint over

variables {miss1,miss2, . . . ,missn}. For instance, ΦO ≡
(∑n

i=1 missi = 100

)
accurately captures

that the attacker observes 100 cache misses in an execution manifesting n memory accesses. For

the sake of formulation, we use ΦO,e to mean the interpretation of an observation constraint ΦO

along a program path e . For example, ΦO,e ≡
(∑

300

i=1 missi = 100

)
if ΦO ≡

(∑n
i=1 missi = 100

)
and

the path e has 300 memory accesses. ΦO,e amounts to f alse if ΦO requires a different number of

memory accesses than those provided by the path e . Given only ΦO to be observed by an attacker,

CHALICE quantifies how much information about the respective program input is leaked.

The central idea of our information leakage detection is to capture the cache behaviour via

symbolic constraints. Let us consider a set of inputs I that exercise the same execution path with n
memory accesses. We use Γ(I) to accurately encode all possible combinations of values of variables

{miss1,miss2, . . . ,missn}. Therefore, if Γ(I) ∧ΦO is unsatisfiable, we can deduce that the respective

observation ΦO did not occur for any input I ∈ I. We now describe how L(tI ) is computed.

3.2 Quantifying Information Leakage in Execution
Figure 3 provides an outline of our entire framework. We symbolically execute a program P

and compute the path condition [27] for each explored path. Such a path condition symbolically

encodes all program inputs for which the respective program path was followed. Our symbolic

execution based framework tracks all memory accesses on a taken path and therefore, enables us

to characterize, for all symbolic arguments satisfying the path condition, the set of all associated

cache behaviours.
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Program 
(P)

Symbolic Execution

Path 
condition 

(pce)

Memory  
Addresses

Symbolic cache behaviour  
𝚪(pce)

Predicates on input 
(π)

Observation  
(e.g. trace of hit/miss)

Information leakage
L(tI)

Observer Model  
(O)

(tI ∈ ∑*)

Observation Constraint 
(ΦO)

Fig. 3. The framework CHALICE

Recall that we use Γ(I) to capture pos-
sible cache hit/miss sequences in an ex-

ecution path, which was activated by a

set of inputs I. In an abuse of notation,

we capture the set of inputs I via path
conditions. For instance, in Figure 2(a),

we use Γ(0 ≤ k ≤ 127) to encode all

possible cache hit/miss sequences for

inputs activating the If branch. For an

arbitrary execution path e , let pce be

the path condition. Along this path, we

record each memory access and we consider its cache behaviour via variablesmissi .missi is set to
1 (resp. 0) if and only if the i-th memory access along the path encounters a cache miss (resp. hit).

Given n to be the total number of memory accesses along the path e , we formulate Γ(pce ) to bound

the value of {miss1,miss2, . . . ,missn}. In particular, any solution of Γ(pce ) ∧ (missi = 1) captures a

concrete input I |= pce and such an input I leads to an execution where the i-th memory access is a

cache miss. Therefore, if an observation ΦO happens to be for input I |= pce , then Γ(pce ) ∧ ΦO,e is

always satisfiable. Conclusively, we capture the information leakage through trace tI as follows:

L(tI ) = 2
N −

����� ∨
e ∈Paths

(
Γ(pce ) ∧ ΦO,e

) �����
sol

(4)

where N is size of program input (in bits), ΦO,e is the interpretation of the observation constraint

on path e , Paths is the set of all program paths and pce is the path condition for program path

e . |X|sol captures the number of solutions satisfied by predicate X. It is worthwhile to note that

|
∨

e ∈Paths
(
Γ(pce ) ∧ ΦO,e

)
|sol accurately captures the number of program inputs that exhibit the

observation satisfied by ΦO . In other words, Equation (4) quantifies the number of program inputs

that do not exhibit the observation, as captured by ΦO . Hence, if the attacker observes ΦO , then

she can deduce as many as L(tI ) inputs were impossible for ΦO .

Relation to entropy. The secrecy of a sensitive input is usually measured as the uncertainty of

an attacker to guess its value. This uncertainty can be measured using entropies such as Shannon

entropy (H ) or min-entropy (H∞) [20, 38]. Let I be the set of secret input values where each

input I ∈ I has an a priori probability p(I ) to be used. The initial uncertainty is given by H =

−
∑

I ∈I p(I ) log2(p(I )) for the Shannon entropy and by H∞ = − log
2
(max{p(I ) | I ∈ I}) for the min-

entropy. In the particular case where all sensitive inputs are equally probable (i.e., p(I ) = 1/ |I | for

each I ∈ I), then both measures coincide (H = H∞ = log
2
|I|).

Assume the observations are completely determined by the sensitive input. Suppose the at-

tacker makes an observation O. Let IO be the set of all sensitive inputs in I leading to the ob-

servation O. Let pO(I ) be the probability that the sensitive input is I given the behaviour O is

observed. Notice that pO(I ) =
1/ |IO | in case sensitive inputs are equally probable. The remain-

ing uncertainty is given by H(O) = −
∑

I ∈I pO(I ) log2(pO(I )) using the Shannon entropy and by

H∞(O) = − log
2
(max{pO(I ) | I ∈ I}) using the min-entropy. These two measures coincide again

for equally probable sensitive inputs (H(O) = H∞(O) = log
2
|IO |). Observe that IO is the set of all

program inputs for which

∨
e ∈Paths

(
Γ(pce ) ∧ ΦO,e

)
evaluates to true. Hence, if the attacker assumes

that all values of the sensitive input are equally probable for observation constraint ΦO , we get

H(O) = log
2

�� ∨
e ∈Paths

(
Γ(pce ) ∧ ΦO,e

) ��
sol (5)
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In summary, less the number of satisfying solutions for the formula

∨
e ∈Paths

(
Γ(pce ) ∧ ΦO,e

)
,

less the uncertainty to guess the sensitive input I given O is observed.

Example 3.1. Assume a program that takes a 4 bits long sensitive input. Suppose an attacker

can observe three possible values: O1 resulting from 12 input values IO1
, O2 resulting from 3 input

values IO2
, and O3 resulting from a single input value IO1

. Assuming all input values are equally

probable, the initial uncertainty is given by H = log
2
(24) = 4 bits. The remaining uncertainty

after an attacker observes O1 is H(O1) = log
2
(|IO1

|) = log
2
12 = 3.58, after observing O2 is

H(O2) = log
2
(|IO2

|) = log
2
(3) = 1.58 and after observing O3 is H(O3) = log

2
(|IO3

|) = log
2
1 = 0.

The corresponding information leakage is therefore of 4− 3.58 = 0.42 bits for O1, of 4− 1.58 = 2.42
bits for O2, and of 4 − 0 = 4 bits for O3.

Given an observation O, our analysis gives sound upper bounds to |IO | for a rich set of observa-

tions of cache behaviours. The longer we run the analysis, the tighter (i.e. smaller) upper bound

we obtain. The smaller the upper bounds, the more information is established to be leaked by the

given observation. Our analysis can for example be used to exclude adopting some sensitive inputs

resulting in an observation O with a particularly small |IO |, i.e., leaking too much information.

In the next section, we show how to compute the number of solutions of

∨
e ∈Paths

(
Γ(pce ) ∧ ΦO,e

)
(i.e., |IO |) in an incremental fashion.

3.3 Cartesian Bounding of Information Leakage
We justify and describe in the following a simple technique to tackle the scalability challenges.

These challenges are faced by model counting for quantifying side-channel leakage.

3.3.1 Challenges to compute L(tI ). Computing the exact value of L(tI ) can become infeasible

for the targeted problems in this paper. For instance, the input domain of targeted programs are

as big as 2
128

and the number of CNF clauses for an equivalent #SAT problem varies from 550K

to two Millions, with hundreds of thousands of variables. Such a problem scale is several orders

of magnitude higher than the programs evaluated by state-of-the-art model counting tools [13]

supporting non-linear constraints. Specifically, we evaluated a scalable, but approximate model

counter [16] and discovered it is incapable of dealing with the length and the number of clauses

generated for our subject programs.

In order to solve the aforementioned scalability issues, we leverage the capability of our frame-

work to symbolically reason about partitions over input values. This has two crucial advantages: 1)

we have an anytime algorithm to quantify the cache side-channel leakage. This means the longer

time CHALICE runs, the more accurately it quantifies the information leakage. Intuitively, while

evaluating leakage through an observation, we check for each input byte (bit, respectively) whether

the byte can hold a specific value between 0 and 255 (0 or 1, respectively) via predicates πbyte
(πbit , respectively). This allows us to trade accuracy for the number of required solver calls. The

πbyte and πbit cases are clarified after lemma 3.2 in Section 3.3.2. We formalize a generalization of

this idea. This allows us to use arbitrary predicates (not only πbyte and πbit ). Our formalization

reflects on some valuable properties in terms of improving the accuracy of quantified leakage while

requiring fewer solver calls. In addition, our proposed approach is inherently parallel, as each

partition (resulting from predicate choices) can be checked independently. 2) CHALICE not only

quantifies the leakage, it also characterizes the equivalence class of secrets for a given observation.

This is critical to identify weak secrets, such as weak passwords in password checkers or weak

keys in encryption routines. Finally, our proposed scheme also provides strong guarantees on the

derived bound for L(tI ).
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3.3.2 Input space partitioning to compute L(tI ). Consider a set I of program inputs containing

all possible N -bit input values, i.e., |I| = 2
N
. A partition P of I is a set {P[j] | 1 ≤ j ≤ |P |} of disjoint

non-empty sets whose union coincides with I. Here, we write |P | to mean the size of P, i.e. the
number of subsets of I defined by the partition P. For example, a possible partition of size 2 is the

one that partitions program inputs into two sets depending on the value of their first bit. Assume

K partitions P1, . . . , PK of the input set I for which no (P1[i1] ∩ P2[i2] ∩ . . . ∩ PK [iK ]) is empty, for

any i j : 1 ≤ i j ≤ |Pj |. A {P1, . . . , PK }-based Cartesian partitioning of I, written (P1⊠ P2⊠ . . .⊠ PK ),
is the partition of I that corresponds to the intersection of all partitions P1, . . . , PK , i.e, whose
elements are the sets (P1[i1] ∩ P2[i2] ∩ · · · ∩ PK [iK ]) where i j : 1 ≤ i j ≤ |Pj |. For each tuple

(P1[i1], . . . , PK [iK ]) of the cross product (P1× . . .×PK ), we write [[(P1[i1], . . . , PK [iK ])]] to mean the

element (P1[i1] ∩ P2[i2] ∩ . . . ∩ PK [iK ]) of the Cartesian partitioning (P1⊠ . . .⊠ PK ). For a subsetT
of the cross product (P1×P2× . . .×PK ), we let [[T ]]mean the union∪t ∈T [[t]]. A Cartesian partitioning

(P1 ⊠ . . .⊠ PK ) is said to be complete if each [[(P1[i1], . . . , PK [iK ])]] is a singleton of I. Observe that
this means |I| = 2

N = |P1 | × . . . × |PK | holds. Given a subset S of I and a Cartesian partitioning

(P1 ⊠ . . . ⊠ PK ) of I, we write (S) |(P1⊠...⊠PK ) to mean the set of elements of (P1 ⊠ . . . ⊠ PK ) whose
denotations intersects S . Observe that S = [[(S) |(P1⊠...⊠PK )]] in case (P1 ⊠ . . . ⊠ PK ) is complete.

The following lemma bounds information leakage by requiring only Σi :1≤i≤K |Pi | solver calls (as
opposed to 2

N = Πi :1≤i≤K |Pi | when enumerating all inputs):

Lemma 3.2 (Cartesian leakage bound). Assume a complete Cartesian partitioning (P1⊠. . .⊠PK )

of I and a trace tI that results in the observation constraint ΦO . If UΦO

Pi
⊆ Pi is the set of Pi elements

for which ΦO is unfeasible, then L(tI ) ≥ 2
N −

∏
1≤i≤K

(
|Pi | − |UΦO

Pi
|

)
.

Proof. RecallL(tI ) = 2
N −|

∨
e ∈Paths

(
Γ(pce ) ∧ ΦO,e

)
|sol . Observe |

∨
e ∈Paths

(
Γ(pce ) ∧ ΦO,e

)
|sol

is the size of the set SΦO
of all program inputs I that exhibit the observation ΦO , i.e., satisfying

some path condition pce where (Γ(I ) ∧ ΦO,e ) holds. Observe that SΦO
, which coincides with the

denotation of

(
SΦO

)
|(P1⊠...⊠PK )

, is included in the denotation of

( (
SΦO

)
|P1
×

(
SΦO

)
|P2
× . . .×

(
SΦO

)
|PK

)
.

Hence, |SΦO
| ≤ Πi :1≤i≤K

�� (SΦO

)
|Pi

��
. We conclude by observing that

(
SΦO

)
|Pi
= Pi \ U

ΦO

Pi
since UΦO

Pi
is

the subset of Pi for which ΦO is unfeasible. □

Lemma 3.2 holds for any complete partitioning of the set of inputs. In practice, we can generate

the K partitions by sampling the N -bit input into K equal segments. We then constrain the search

space of the solver by restricting the value of each such input segment. For instance, let us assume

k is the program input and ki captures the i-th input segment. The i-th partition is defined using

2

N
K predicates πi [v] ≡ (ki = v) for v ∈

{
0, 1, . . . , 2

N
K − 1

}
. For a segment i , the predicates in

{πi [v] | 0 ≤ v < 2

N
K } are pairwise unsatisfiable and partition all input values into 2

N
K elements.

The obtained Cartesian partitioning is complete. We use each πi [v] to guide the solver and search

for a solution only in the input space where the i-th input segment is v . Since, we have K different

segments, we generate a total of

(
K · 2

N
K

)
different predicates, each characterizing an element of

some partition. An appealing feature of this process is that all K · 2
N
K predicates can be generated

independently and result in parallelizable unsatisfiability checks. Given a partition i , we compute

UΦO

Pi
as the number of predicates πi [v] for which the following is unsatisfiable:∨

e ∈Paths

(
Γ(pce ) ∧ ΦO,e ∧ πi [v]

)
(6)

It is worthwhile to note that setting K = 1 amounts to enumerating all solutions as in Equation (4).

This yields an exact but expensive measure of information leakage. In contrast, choosing K = N
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amounts to checking information leakage at bit-level. This results in a scalable amount of solver

calls (only 2N ) but yields a potentially much weaker bound on information leakage. Therefore,

K provides a tunable parameter for the detection of information leakage. We can formalize this

observation by introducing the notion of Cartesian refinement. Assume two Cartesian partitioning

of I, (P1 ⊠ . . . ⊠ PK ) and (Q1 ⊠ . . . ⊠ QM ). We say that (P1 ⊠ . . . ⊠ PK ) refines, or is more precise

than, (Q1 ⊠ . . . ⊠ QM ) if there is a surjective function h : {1, . . . ,M} → {1, . . . ,K} such that each

partition Pi , for i : 1 ≤ i ≤ K , coincides with the Cartesian partitioning (Qj1 ⊠ . . . ⊠ Qj
|h−1(i )|

) where{
j1, . . . , j |h−1(i) |

}
= h−1(i).

Lemma 3.3 (Cartesian bound refinement). Assume two complete Cartesian partitioning of I
where (P1⊠ . . .⊠PK ) refines (Q1⊠ . . .⊠QM ). For any trace tI that results in the observation constraint
ΦO , the Cartesian leakage bound obtained with (P1 ⊠ . . .⊠ PK ) is always larger or equal than the one
obtained with (Q1⊠. . .⊠QM ), i.e.,L(tI ) ≥ 2

N −
∏

1≤i≤K

(
|Pi | − |UΦO

Pi
|

)
≥ 2

N −
∏

1≤i≤M

(
|Qi | − |UΦO

Qi
|

)
.

Proof. Let SΦO
be the subset of program inputs I that exhibits the observationΦO , i.e., containing

all program inputs I satisfying some path condition pce where (Γ(I )∧ΦO,e ) holds. Observe that SΦO
,

which coincides with the denotation of

(
SΦO

)
|(P1⊠P2⊠...⊠PK )

is subset of the denotation of

( (
SΦO

)
|P1
⊠(

SΦO

)
|P2

⊠ . . .⊠
(
SΦO

)
|PK

)
which is subset of the denotation of

( (
SΦO

)
|Q1

×
(
SΦO

)
|Q2

× . . .×
(
SΦO

)
|QM

)
.

This leads to the following crucial inequalities: |SΦO
| ≤ Πi :1≤i≤K

�� (SΦO

)
|Pi

�� ≤ Πi :1≤i≤M
�� (SΦO

)
|Qi

��
.

We conclude by observing that

(
SΦO

)
|Pi
= Pi \ U

ΦO

Pi
since UΦO

Pi
is the subset of Pi for which ΦO is

unfeasible and similarly

(
SΦO

)
|Qi
= Qi \ U

ΦO

Pi
. □

Due to the classic path explosion problem in symbolic execution, it is possible that only a subset

of execution paths E ⊆ Paths can be explored within a given time budget. In such cases, we can

quantify L(tI ) as follows.

Lemma 3.4 (Anytime information leakage). Assume a complete Cartesian partitioning (P1 ⊠
. . .⊠PK ) of I and a trace tI that results in the observation constraint ΦO . If E ⊆ Paths, let UΦO,E

Pi
⊆ Pi

be the set of Pi elements for which the observation constraint ΦO is impossible along the paths E. The
following holds:

L(tI ) ≥
��∨
e ∈E

pce
��
sol −

∏
1≤i≤K

(
|Pi | − |UΦO,E

Pi
|

)
(7)

Proof. Observe that the set of all path conditions defines a partition of the set of program

inputs. Hence 2
N
coincides with the sum of

��∨
e ∈E pce

��
sol and

��∨
e ∈Paths\E pce

��
sol . Similarly, we

observe that

��∨
e ∈Paths

(
Γ(pce ) ∧ ΦO,e

) ��
sol coincides with the sum of

��∨
e ∈E

(
Γ(pce ) ∧ ΦO,e

) ��
sol and��∨

e ∈Paths\E
(
Γ(pce ) ∧ ΦO,e

) ��
sol . Therefore, information leakageL(tI ) coincideswith: |

∨
e ∈E pce |sol+

|
∨

e ∈Paths\E pce |sol −
��∨

e ∈E
(
Γ(pce ) ∧ ΦO,e

) ��
sol −

��∨
e ∈Paths\E

(
Γ(pce ) ∧ ΦO,e

) ��
sol . The result follows

from both | ∨e ∈Paths\E pce |sol ≥
��∨e ∈Paths\E

(
Γ(pce ) ∧ ΦO,e

) ��
sol and

∏
1≤i≤K

(
|Pi | − |UΦO,E

Pi
|

)
≥��∨e ∈E

(
Γ(pce ) ∧ ΦO,e

) ��
sol . □

For instance, using the segments defined before, UΦO,E
Pi

is the number of valuesv in 0 ≤ v < 2
N /K

for which no Γ(pce ) ∧ΦO,e ∧ (ki = v) is satisfiable. Note the term |
∨

e ∈E pce |sol involves only path

conditions. |
∨

e ∈E pce |sol can often be computed via model counting [5] in practice.

In the next section, we will describe the construction of Γ (pce ) for an arbitrary path condition

pce .
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4 GENERATING SYMBOLIC CACHE MODEL
The technical contribution of our methodology is to establish a relation between a symbolic

model for the cache and our leakage metric introduced in Section 3.2. In this section, we propose

and formulate a novel symbolic model to encode the performance of direct-mapped caches and
set-associative LRU caches. To describe our model, we shall use the following notations:

• 2
S
: The number of cache lines in the cache.

• 2
B
: The size of a cache line (in bytes).

• A : Associativity of a set-associative cache.

• set(ri ) : Cache line accessed by instruction ri .
• taд(ri ) : The tag that would be stored in the cache for the memory access by ri .

Intercepting Memory Requests. We symbolically execute a program P . During symbolic execu-

tion, we track the path condition and the sequence of memory accesses for each explored path. For

instance, while symbolically exercising the If branch of Figure 2(a), we track the path condition

0 ≤ k ≤ 127 and the sequence of memory addresses ⟨&p[k],&q[255 − k],&p[k]⟩. It is worthwhile
to note that such memory addresses might capture symbolic expressions due to the dependency

from program inputs. Concretely, we compute the path condition pce and the execution trace Ψpce
for each explored path e as follows:

Ψpce ≡ ⟨(r1,σ1), (r2,σ2), . . . , (rn−1,σn−1), (rn ,σn)⟩ (8)

where ri captures the i-th memory-related instruction executed along the path and σi symbolically

captures the memory address accessed by ri .

Modeling Symbolic Cache Access. Following the basic design principle of caches, we compute

set(ri ) and taд(ri ) by manipulating the symbolic expression σi as follows:

set(ri ) = (σi ≫ B) &

(
2
S − 1

)
; taд(ri ) = (σi ≫ (B + S)) (9)

We note that set(ri ) and taд(ri ) might be symbolic expressions due to the symbolic nature of σi .

4.1 Modeling Cache Misses
We characterize cache misses into the following categories:

(1) Cold cache misses. Instruction ri suffers a cold miss if and only if the memory block accessed

by ri has not been accessed by any previous instruction r ∈ {r1, r2, . . . , ri−1}.
(2) Cache misses due to eviction. Instruction ri suffers such a cache miss if and only if the last

access to set(ri ) was from an instruction r j ∈ {r1, r2, . . . , ri−1}, such that taд(r j ) , taд(ri ).

4.1.1 Constraints to formulate cold cache misses. If a memory block is accessed for the

first time, such an access will inevitably incur a cache miss. Let us consider that we want to check

whether instruction ri accesses a memory block for the first time during execution. In other words,

we can check none of the instructions r ∈ {r1, r2, . . . , ri−1} access the same memory block as ri .
Therefore ri suffers a cold miss if and only if the following condition holds:

Θcold
i ≡

∧
p∈[1,i)

(
set(rp ) , set(ri )

)
∨

(
taд(rp ) , taд(ri )

)
(10)

We note that the conditions for cold misses do not depend on the specifics of caches (e.g. direct-

mapped or set-associative). In the next section, we show the formulation of eviction misses for

direct-mapped and set-associative LRU caches.

4.1.2 Constraints to formulate cache evictions. In the following, we formulate a set of

constraints to encode cache misses due to the eviction of memory blocks from caches.
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Direct-mapped caches. In direct-mapped caches, each cache set has exactly one cache line, i.e.,

A = 1. Therefore, each memory address is mapped to exactly one cache line.

rkr1 rj rnri

Induced cache miss (causing eviction)

No reuse of  
memory block

Fig. 4. r j induces a cachemiss at ri if r j accesses the same
cache set as ri and rk does not load the block accessed by
ri

To illustrate different cache-miss scenarios clearly,

let us consider the example shown in Figure 4. Assume

that we want to check whether ri will suffer a cache
miss due to eviction. This might happen only due

to the instructions appearing before (in the program

order) ri . Consider one such instruction r j , for some

j ∈ [1, i). Informally, r j is responsible for a cache miss

at ri , only if the following conditions hold:
1)ψcnf (j, i): ri and r j access the same cache line,

2)ψdif (j, i): ri , r j access different memory-block tags.ψcnf (j, i) andψdif (j, i) are formalized as

follows:

ψcnf (j, i) ≡
(
set(r j ) = set(ri )

)
; ψdif (j, i) ≡

(
taд(r j ) , taд(ri )

)
(11)

3) ψeqv (j, i): There does not exist any instruction rk where k ∈ [j + 1, i), such that rk accesses

the same memory block as ri . It is worthwhile to note that the existence of rk will load the memory

block accessed at ri . Since rk is executed after r j (in program order), r j is not responsible for a cache
miss at ri . We formulate the following constraint to capture this condition:

ψeqv (j, i) ≡
∧

k : j<k<i

(taд(rk ) , taд(ri ) ∨ set(rk ) , set(ri )) (12)

Constraints (11)-(12) capture necessary and sufficient conditions for instruction r j to replace the

memory block accessed by ri (where j < i) and the respective block not being accessed between

r j and ri . In order to check whether ri suffers a cache miss due to eviction, we need to check

Constraints (11)-(12) for any r ∈ {r1, r2, . . . , ri−1}. This can be captured via the following constraint:

Θ
emp
i ≡

( ∨
j : 1≤j<i

(
ψcnf (j, i) ∧ψdif (j, i) ∧ψeqv (j, i)

))
(13)

Instruction ri will not suffer a cache miss due to eviction when, for all prior instructions, at least

one of the Constraints (11)-(12) does not hold. This scenario is the negation of Constraint (13) and

therefore, it is captured via ¬Θ
emp
i .

We use the 0-1 variablemissi to capture the cache miss behaviour of ri . As discussed in the preced-
ing paragraphs, ri suffers a cold miss (i.e. satisfying Constraint (10)) or the memory block accessed

by ri would be evicted due to the instructions executed before ri (i.e. satisfying Constraint (13)).

Using this notion, we formulate the value ofmissi as follows:

Θm,dir
i ≡

((
Θ
emp
i ∨ Θcold

i

)
⇒ (missi = 1)

)
Θh,dir
i ≡

((
¬Θ

emp
i ∧ ¬Θcold

i

)
⇒ (missi = 0)

) (14)

Set-associative LRU caches. InA-way set-associative caches, each cache set containsA cache

lines. A memory block is mapped to a unique cache set, but it can be located at any of the A cache

lines of the respective set. If the cache set is full and a new memory block mapped to the same

cache set is accessed, then the least recently used memory block (LRU) is replaced from the set.

Modeling set-associative caches involves some unique challenges. To illustrate this, let us con-

sider the following sequence of memory accesses in a two-way associative cache with the LRU

replacement policy: (r1 : m1) → (r2 : m2) → (r3 : m2) → (r4 : m1). We assume bothm1,m2 are

accessed from the same cache set and the cache is empty before r1 starts execution. We observe
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that r4 will still incur a cache hit. This is because r4 suffers only one cache conflict from the memory

blockm2. To incorporate this into our symbolic cache model, we only count cache conflicts from

the closest access to a given memory block. Therefore, in our example, we count cache conflicts to

r4 from r3 and discard the cache conflict from r2. Formally, we introduce the following additional

condition for instruction r j to inflict a cache conflict to instruction ri .
ψunq(j, i): No instruction between r j and ri accesses the same memory block as r j . This is to

ensure that r j is the closest to ri in terms of accessing the memory block corresponding to the

memory address σj (cf. Equation 8). We captureψunq(j, i) formally as follows:

ψunq (j, i) ≡
∧

k : j<k<i

(
taд(rk ) , taд(r j ) ∨ set(rk ) , set(r j )

)
(15)

Hence, r j inflicts a unique cache conflict to ri only ifψunq(j, i),ψeqv (j, i),ψcnf (j, i) andψdif (j, i) are
all satisfiable. This is formally captured as follows:

Θ
emp
j,i ≡

( ∨
j : 1≤j<i

(
ψcnf (j, i) ∧ψdif (j, i) ∧ψeqv (j, i) ∧ψunq (j, i)

))
→

(
ηji = 1

)
Θ
ehp
j,i ≡

( ∧
j : 1≤j<i

(
¬ψcnf (j, i) ∨ ¬ψdif (j, i) ∨ ¬ψeqv (j, i) ∨ ¬ψunq (j, i)

))
→

(
ηji = 0

) (16)

Concretely, ηji is set to 1 if r j creates a unique cache conflict to ri and ηji is set to 0 otherwise.

If the number of unique cache conflicts to ri exceeds the associativity (A) of the cache, then ri
suffers a cache miss due to eviction. Based on this intuition, we formalizemissi for set-associative
LRU caches as follows:

Θm,lru
i ≡

©­«
∑
j ∈[1,i)

ηji ≥ A
ª®¬ ∨ Θcold

i ⇒ (missi = 1)

Θh,lru
i ≡

©­«
∑
j ∈[1,i)

ηji < A
ª®¬ ∧ ¬Θcold

i ⇒ (missi = 0)

(17)

We note that

∑
j ∈[1,i) ηji accurately counts the number of unique cache conflicts to the instruction

ri (cf. Constraint (16)). Hence, the condition

(∑
j ∈[1,i) ηji ≥ A

)
captures whether the memory

block accessed by ri was replaced from the cache before ri . If ri does not suffer a cold miss and(∑
j ∈[1,i) ηji < A

)
, then ri will be a cache hit when executed, as captured by the condition Θh,lru

i .

4.2 Putting it all together
Recall that Γ(pce ) captures the constraint system to encode the cache behaviour for all inputs

I |= pce . In order to construct Γ(pce ), we gather constraints, as derived in the preceding sections,

and the path condition. For direct-mapped caches, Γ(pce ) can simply be formulated as follows:

Γ(pce ) ≡ pce ∧
∧

i ∈[1,n]

(
Θm,dir
i ∧ Θh,dir

i

)
(18)

For set-associative LRU caches, we need to additionally account for constraints capturing unique

cache conflicts (i.e. Constraint (16)). Hence, Γ(pce ) is formalized via the following constraint:

Γ(pce ) ≡ pce ∧
∧

i ∈[1,n]

©­«Θm,lru
i ∧ Θh,lru

i ∧
∧

j ∈[1,i)

Θ
emp
j,i ∧

∧
j ∈[1,i)

Θ
ehp
j,i

ª®¬ (19)
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4.3 Modeling Cache Access
In the preceding sections, we discuss our symbolic cache model Γ(pce ) (cf. Constraints (18)-(19)).
Γ(pce ) encodes the cache timing behaviour for all inputs I |= pce . However, Γ(pce ) does not encode
the cache access behaviour. This means that Γ(pce ) lacks the capability to compute the set of cache

lines accessed for any input I |= pce . Computing such information is crucial to investigate the

information leakage for access-based attacks [30]. The basic idea behind access-based attacks is to

first fill up the cache with some data D. Then, based on the knowledge of the cache replacement

policy, the attacker determines the cache line for each memory block in D. After the victim process

(e.g. an encryption routine) finishes execution, the attacker repeats the process of accessing memory

blocks in D and computes the cache lines accessed by the victim process. This is possible, as some

memory blocks in D were replaced by the victim and the attacker process identifies that such

memory blocks took longer time than the rest to access. Recent cache attacks [33] demonstrate

the feasibility of access-based cache attacks in ARM-based embedded platforms. Figure 5 outlines

the process behind an access-based attack for an LRU cache. In summary, the victim process

leaks information if the set of cache lines being accessed is dependent on sensitive inputs (e.g. the
encryption key in cryptographic routines).
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Fig. 5. (a) Attacker fills up the cache with memory blocks D1 . . .D16 and constructs the state of each cache
line with the knowledge of LRU policy, (b) shaded cache lines captures the lines accessed by the victim process,
(c) the attacker resumes execution and accesses memory blocks in the order D4 → D3 → D2 → D1 for the
first cache set, in the order D8 → D7 → D6 → D5 for the second cache set and so on. The attacker observes
that accessing D1, D2, D5 . . .D9 took longer than cache hits. From this, she can compute the cache lines
accessed by the victim process, (d) acci captures the number of memory blocks accessed by the victim process
from cache set i . We can accurately compute the cache lines accessed by the victim process via acc1 . . . acc4.

4.3.1 Modeling access-based observers. An access-based observation can be modeled by

counting the unique memory blocks accessed from each cache set (cf. Figure 5(d)). For instance,
consider the first cache set in Figure 5(b). Since two memory blocks from the victim process are

accessed from the first cache set, an access-based observer will compute that data elements D1

and D2 took longer to access than elements D3 and D4. However, if the number of memory blocks

accessed from the second cache set is at least the associativity of the cache, then the access-based

observer determines that accessing all elements between D5 . . .D8 took longer than a cache hit.

Based on the intuition mentioned in the preceding paragraph, we model an access-based observer

via the mapping O : Σ∗ → (S→ [0,A]), where Σ is an alphabet defined over cache hits (h) and
misses (m), S is the set of all cache sets and A is the associativity of a cache. For direct-mapped

caches, A=1. Intuitively, for a given execution trace, such an observer computes the number of

memory blocks accessed from each cache set. We note that given the number of memory blocks (of a

victim process) accessed from each cache set, an access-based observer can accurately compute the

set of cache lines accessed by the victim process (cf. Figure 5(d)). In the next sections, we formulate

Γ(pce ) to encode the number of memory blocks accessed from each cache set. Subsequently, we

show the usage of Γ(pce ) to quantify the information leaked via access-based observers.

4.3.2 Direct-mapped caches. In direct-mapped caches, a givenmemory address can bemapped

to exactly one cache line (as shown in Figure 2(d)). We use the symbolic variable accs to capture the
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number of cache lines accessed in cache set s . For direct-mapped caches, accs can either be one or

zero. Concretely, if any of the accessed memory blocks is accessed from cache set s , then accs is set
to one. Otherwise, accs is set to zero. This is formally captured as follows:

Θacc+
s ≡

∨
i ∈[1,n]

(set(ri ) = s) ⇒ (accs = 1) ; Θacc−
s ≡

∧
i ∈[1,n]

(set(ri ) , s) ⇒ (accs = 0) (20)

Finally, we construct Γ(pce ) by combining the constraints gathered for all cache sets as follows:

Γ(pce ) ≡ pce ∧
∧

s ∈[1,2S ]

(
Θacc+
s ∧ Θacc−

s

)
(21)

4.3.3 Set-associative caches with LRU policy. In LRU caches, each cache set can hold as

many memory blocks as the associativity (A) of the cache. Therefore, unlike direct-mapped caches,

it is necessary to count unique memory blocks accessed from a given cache set. To this end, we

introduce a symbolic variable accs,i for each cache set s and for each instruction ri . accs,i is set to
one if and only if the following conditions hold:

(1) Instruction ri accesses cache set s . Therefore, we have (set(ri ) = s).
(2) Any instruction r j ∈ {r1, r2, . . . , ri−1} either does not access cache set s or each of r j and ri

access memory blocks with different tags. This is formally captured as follows:

ψacc (i) ≡
∧

j ∈[1,i)

(
set(r j ) , s

)
∨

(
taд(r j ) , taд(ri )

)
(22)

Intuitively, ifψacc (i) is satisfiable, then it ensures that ri is the first instruction to read from or write

to the accessed memory block. Based on this intuition, accs,i is symbolically bounded as follows:

Θacc+
s,i ≡ (set(ri ) = s) ∧ψacc (i) ⇒

(
accs,i = 1

)
(23)

Θacc−
s,i ≡ (set(ri ) , s) ∨ ¬ψacc (i) ⇒

(
accs,i = 0

)
(24)

Finally, we compute the number of unique memory blocks accessed from cache set s by summing

up the value of accs,i for all memory-related instructions. Let us assume accs captures the number

of unique memory blocks accessed from cache set s . Based on this notation, our symbolic cache

model Γ(pce ) is formalized as follows:

Γ(pce ) ≡ pce ∧
∧

s ∈[1,2S ]

©­«
∧

i ∈[1,n]

(
Θacc+
s,i ∧ Θacc−

s,i

)
∧

©­«accs =
∑

j ∈[1,n]

accs, j
ª®¬ª®¬ (25)

We note that the values of accs,i in Constraint (25) is dictated via the constraints Θacc+
s,i and Θacc−

s,i .

The variable accs captures the number of unique memory blocks accessed from cache set s .

4.4 Size of Constraints
The size of Γ(pce ) in Constraint (18)-(19) is bounded by O(n3). Here n is the number of memory

accesses. The dominating factor in this constraint system is the set of constraints generated from

Constraint (13) and Constraint (16). In general, we generate constraints for each pair of memory

accesses that may potentially conflict in the cache, leading toO(n2) pairs in total. For each such pair,

the constraint may have a size O(n) — making the size of the overall constraint system to be O(n3).
For access-based observers, the size of Γ(pce ) is bounded by O(n · 2S) for direct-mapped caches

(cf. Constraint 21) and it is bounded by O(n2 · 2S) for set-associative caches (cf. Constraint 25).
For set-associative caches, additional constraints are required for checking unique memory block

accesses (cf. Constraint 22).
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5 CHECKING INFORMATION LEAKAGE
In this section, we instantiate CHALICE by formulating ΦO for three different observer models. We

assume that tI is the observed execution trace for input I and we wish to quantify how much

information about input I is leaked through tI .

Observation via total miss count In this scenario, an attacker can observe the number of cache

misses of executions [11]. The observer O : Σ∗ → N is a function, where a sequence of cache hits

and misses are mapped to a non-negative integer capturing the number of cache misses. Therefore,

for a trace tI ∈ Σ∗
associated to an input I , O(tI ) captures the number of cache misses in tI .

Recall that we use the 0-1 variablemissi to capture the cache miss behaviour of the i-th memory

access. We check the unsatisfiability of the following logical formula to record information leakage:∨
e ∈Paths

©­«Γ(pce ) ∧ ©­«
∑

i ∈[1,ne ]

missi = O(tI )
ª®¬ ∧ π

ª®¬ (26)

where ne is the number of memory accesses occurring along path e and π is a predicate defined on

program inputs. Concretely, if Constraint (26) is unsatisfiable, we can establish that the information

“¬π ≡ true" is leaked through tI . By performing such unsatisfiability checks over the entire program

input space, we quantify the information leakage L(tI ) through execution trace tI (cf. Section 3.3).

Observation via hit/miss sequence For an execution trace tI ∈ Σ∗
, an observer can monitor

hit/miss sequences from tI [6]. Concretely, let us assume {o1,o2, . . . ,ok } is the set of positions
in trace tI where the observation occurs. If n is the total number of memory accesses in tI , we
have oi ∈ [1,n] for each i ∈ [1,k]. We define the observer O : Σ∗ → {0, 1}k as a projection from

the execution trace onto a bitvector of size k . Such a projection satisfies the following conditions:

O(tI )i = 1 if toi =m and O(tI )i = 0 otherwise. O(tI )i captures the i-th bit of O(tI ) and similarly,

toi captures the oi -th element in the execution trace tI . Note that a strong observer could map the

entire execution trace to a bitvector of size n.
For such an observer, we check the unsatisfiability of the following to record information leakage:∨

e ∈Paths

©­«Γ (pce ) ∧
∧

i ∈{1,2, ...,k }

©­«
oi ≤ ne

∧missoi = O(tI )i
ª®¬ ∧ π

ª®¬ (27)

where π is a predicate on program inputs. By generating such predicates over the input space,

we quantify the information leaked about input I via L(tI ) (cf. Section 3.3). In Constraint (27),

our general information leakage checker in Constraint (6) is instantiated with ΦO,e being set to∧
i ∈{1,2, ...,k }

(
missoi = O(tI )i

)
.

Observation via cache accesses An access-based observer [30] monitors the cache lines being

accessed by a victim process. As shown in Figure 5, this can be computed via the number of memory

blocks accessed from each cache set. Therefore, an access-based observer is modeled as follows.

O : Σ∗ → (S→ [0,A]). For an execution trace tI ∈ Σ∗
, O(tI )(s) (written OtI (s)) captures the

number of cache lines touched by the victim process within cache set s . It is worthwhile to note
that 0 ≤ OtI (s) ≤ A.

For access-based observers, the unsatisfiability of the following records information leakage:∨
e ∈Paths

©­«Γ (pce ) ∧
∧

s ∈[1,2S ]

©­«
(
OtI (s) ≤ A − 1

)
⇒

(
accs = OtI (s)

)
∧

(
OtI (s) = A

)
⇒

(
accs ≥ OtI (s)

) ª®¬ ∧ π
ª®¬ (28)

where π is a predicate on program inputs. By generating such predicates over the input space,

we quantify the information leaked about input I via L(tI ) (cf. Section 3.3). In Constraint (28), we

abstract away all scenarios where the number of memory blocks accessed from a cache set is at
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least the associativity of the cache (i.e. accs ≥ A). This is to align with the point of view of observer

O. Concretely, for any scenario satisfying accs ≥ A, the observer can only determine that all cache

lines of set s were touched by the victim process.

6 EVALUATION

Implementation setup: We implemented CHALICE on top of the KLEE symbolic virtual ma-

chine [2] based on LLVM. We engineered KLEE to symbolically execute the PISA [8] binary code

(compiled with gcc 2.7.2.3) – a MIPS like architecture. This is because, cache performance is

captured accurately only in the executable binary code. To keep CHALICE modular and extensible

for other target binaries, we implemented a translator that converts PISA binary code to the LLVM

bitcode. Such a translator is unique in the sense that it focuses on preserving both the memory be-

haviour and the functionality during the translation, whereas existing disassemblers only preserve

the functionality. Some salient features of our translation are as follows: First, we ensure that each

load/store instruction in the binary code to have a functionally equivalent load/store instruction in

the translated bitcode. Secondly, we preserve the static-single-assignment (SSA) form of LLVM

bitcode by systematically inserting Phi functions. Thirdly, several instructions at the machine code,

e.g., LWL and LWR, may require multiple LLVM instructions to implement. Finally, LLVM bitcode

is strongly typed. As a result, LLVM bitcode uses different instructions for pointer arithmetic as

compared to general-purpose arithmetic. We use a lightweight type inference on the binary code

and compute the appropriate LLVM instruction for a given machine-level instruction.

Experimental setup: To evaluate the effectiveness of CHALICE, we have chosen cryptographic

applications from the OpenSSL library [4] (OpenSSL 1.1.0-pre6-dev) and other software reposito-

ries [3], as well as applications from the Linux GDK (version 3.0) library (cf. Table 1). The choice of
our programs is motivated by the critical importance of validating security-related properties in

these applications. We have performed all experiments on an eight-core 4.00GHz i7-6700K CPU

with 8GB of RAM and running Debian 8.4 operating system.

Program Lines of Lines of Input Max.

C code MIPS code size #Memory

(disassembled access

version)

AES [3] 800 4842 16 bytes 2134

AES [4] 1428 1700 16 bytes 420

DES [4] 552 3480 8 bytes 334

RC4 [4] 160 660 8 bytes 1538

RC5 [4] 256 1740 16 bytes 410

GDK library 2650 2700 4 bytes 126

Table 1. Salient features of the evaluated subjects

Observation via Observation via hit/miss

Program miss count of an arbitrary access

L(tI ) L(tI ) L(tI ) L(tI )
πbit πbyte πbit πbyte

AES 0 ≈ 2
127

0 ≈ 2
127

AES 0 ≈ 2
37

0 ≈ 2
8

DES 0 ≈ 2
62

0 ≈ 2
42

RC4 0 ≈ 2
6

0 ≈ 2
8

RC5 0 0 0 0

GDK 0 ≈ 2
31

0 ≈ 2
31

Table 2. L(tI ) quantified w.r.t. πbit and πbyte

Generating predicates on inputs: Using CHALICE, we can select an arbitrary number of bits in

the program input to be symbolic. These symbolic bits capture the high sensitivity of the input

subspace and our framework focuses to quantify the information leaked about this subspace. For

instance, in encryption routines, the bits of private input (e.g. a secret key) can be made symbolic.

Without loss of generality, in the following, we assume that the entire input is sensitive and we

make all input bits to be symbolic.

Let us assume an arbitrary N -byte program input k . We sample k into K equal segments and

use ki to capture the i-th segment. We generate the following predicates on inputs for quantifying

information leakage L(tI ) (cf. Section 3.3):

πbit = {ki = v | i ∈ [1,N ],v ∈ [0, 1]} ; πbyte =

{
ki = v | i ∈ [1,

N

8

],v ∈ [0, 255]

}
It is worthwhile to mention that for a 16-byte sensitive input (e.g. in AES-128), πbit and πbyte lead
to 256 and 4096 calls to the solver, respectively to quantify L(tI ).
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6.1 Key Results
Table 2 outlines the key results obtained from CHALICE. For all evaluations in Table 2, we used an

8 KB direct-mapped cache with a line size of 32 bytes. For each subject program, we generated a

set of executions by selecting a concrete value of the sensitive inputs (e.g. secret key in AES-128)

uniformly at random. All other inputs to the subject program (e.g. plaintext in AES-128) were fixed

while generating these executions. For such a randomly generated execution, Table 2 demonstrates

the quantified information leakage with respect to predicates πbit and πbyte . We make the following

observations from Table 2. For all scenarios, L(tI ) is zero when predicates πbit is used. Therefore,
we can prove the absence of any dependency between the cache performance (i.e. the number of cache
misses or hit/miss sequence) and the value of an arbitrary bit of the key, for all the observations in
Table 2. However, we observe the presence of substantial leakage with respect to πbyte , when the

number of cache misses were observed. For instance, we established that as many as 251 values (out

of 256) are leaked for each byte of the AES key (in the implementation [3]). This means, there exist
at least 25116 (≈ 2

127) possible keys (out of a total 2128) that can be eliminated just by observing the
cache misses. Such an information gives the designer valuable insights when designing embedded

systems, both in terms of choosing an AES key and a cache architecture, in order to avoid serious

security breaches. In contrast to the basic AES implementation [3], we observe (cf. Table 2) that
the OpenSSL version of AES exhibits substantially fewer information leakage. DES exhibits severe

information leakage when the adversaries observe cache misses, whereas RC4 exhibits lower

leakage as compared to AES and DES, with respect to the respective observation.

We also investigated on adversaries who can observe the sequence of cache hits and misses,

instead of just the overall number of cache misses. To simplify our evaluation, we focused on

sequences of length 1, and considered all the memory accesses. Our goal is to check the dependency

between the AES-key and the hit/miss characteristics of an arbitrary memory access. Both AES

and DES exhibit substantial leakage with respect to this adversary. RC4, in contrast, exhibits less

leakage in the respective observation, as shown in Table 2.

For RC5, CHALICE did not report any symbolic memory address or symbolic branch conditions.

Hence, the cache performance of RC5 is unrelated to input and we leverage this report to verify

the absence of cache side-channel leakage in RC5, with respect to the observer models studied.

Coverage: Except routines chosen from the GDK library, the subjects in our evaluation are single-

path programs. This is standard for cryptographic routines, as they aim to avoid input-dependent

branches. Consequently, CHALICE covers 100% of the statements for AES, DES, RC4 and RC5. For
routines involving multiple paths, e.g. routines from the GDK library, CHALICE should be used for

multiple test inputs. In our evaluation, these inputs were generated randomly and they obtained

80% statement coverage in the routines tested from the GDK library. We note that code coverage is

not a suitable metric to evaluate the information leakage. For instance, in AES, we obtained 100%

code coverage, yet the quantified information leakage was zero with respect to predicate πbit .
This only reflects that the observation is not influenced by values of an individual bit in isolation.

However, as observed with respect to predicate πbyte , the amount of information leakage can be

substantial, as the observation is heavily influenced by values of an individual byte in isolation.

Discussion In our evaluation, we observe that CHALICE generally reports higher information

leakage when miss count was observed, as compared to observing the cache behaviour of an

arbitrary access. This is expected, as cache behaviour of a single memory access, in general, also

affects the total miss count. However, if cache behaviours of a pair of memory accesses are inversely

correlated (e.g. one being a cache hit and another being a cache miss for any input), then such

accesses do not affect the total miss count. Yet, these accesses may leak information when their

cache behaviours were observed individually. In our experiments, RC4 exhibits such behaviour.
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Fig. 6. Information leakage in AES [3, 4] w.r.t. different observers (only bytes leaking information are shown)

6.2 Sensitivity of Leakage w.r.t. Cache
In this section, we evaluate CHALICE for a variety of cache configurations. For each experiment, we

show the number of values leaked per input byte. Concretely, for a given observation, CHALICE
deduces howmany values per byte can be ruled out due to the dependency between input and cache

behaviour. Therefore, a higher bar indicates higher leakage. In other words, the output generated

by CHALICE can be used to compute the set of potential inputs that led to the given observation.

Experience with AES: In Figures 6(a)-(d), we outline the number of values leaked per byte of the

AES secret key. The horizontal axis in these figures capture the individual bytes of the AES secret

key. For instance, consider the evaluation shown in Figure 6 for 2-way, 8KB cache. In this scenario,

the AES implementation [3] leaks 212 values per byte of the secret key, for certain observations.

This means, for the respective set of observations, a potential attacker can eliminate the possibility

of at least 212
16
possible keys.

Increasing cache size (or associativity) may have two contrasting effects as follows. For a given

cache size, consider a subset of the input space I=C ⊆ I<C ∪ I=C ∪ I>C (where I<C ∪ I=C ∪ I>C is

the entire input space) which leads to C cache misses. Increasing cache size reduces cache conflict.

Therefore, it is possible that some input i ∈ I>C , which leads to more than C cache misses with

a smaller cache, produces C cache misses with the increased cache size. This tends to increase

the number of inputs leading to C cache misses, thus reducing the amount of information leaked

through observing C misses. Secondly, some input i ∈ I=C may have less than C cache misses with

increased cache size. This reduces the number of inputs having C cache misses, thus increasing the

potential leakage through the observation ofC cache misses. In Figure 6(a), L(tI ) reduces for cache
sizes up to 16 KB, while it increases for a 4-way, 32KB cache due to the aforementioned effects.

, Vol. 1, No. 1, Article 1. Publication date: October 2017.



1:20 Chattopadhyay et al.

 0

 50

 100

 150

 200

 250

1 2 3 4 5 6 7 8

#v
al

ue
s 

le
ak

ed
 p

er
 b

yt
e

Key bytes

Cache side-channel leakage in OpenSSL DES (observation via miss count)

1-way, 4KB
2-way, 8KB

4-way, 8KB
2-way, 16KB

4-way, 16KB
2-way, 32 KB

4-way, 32 KB

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 2 3 4 5 6 7 8

#v
al

ue
s 

le
ak

ed
 p

er
 b

yt
e

Key bytes

Cache side-channel leakage in OpenSSL DES (observation via hit/miss sequence length 1)

1-way, 4KB
2-way, 8KB

4-way, 8KB
2-way, 16KB

4-way, 16KB
2-way, 32 KB

4-way, 32 KB

(a) (b)

 50

 100

 150

 200

 250

1 2 3 4

#v
al

ue
s 

le
ak

ed
 p

er
 b

yt
e

Input bytes

Average cache side-channel leakage in GDK routines w.r.t. cache configurations (observation via miss count)

1-way, 8KB
2-way, 8KB

4-way, 8KB
2-way, 16KB

4-way, 16KB
2-way, 32 KB

4-way, 32 KB

 50

 100

 150

 200

 250

1 2 3 4

#v
al

ue
s 

le
ak

ed
 p

er
 b

yt
e

Input bytes

Average cache side-channel leakage in GDK routines w.r.t. cache configurations (observation via miss sequence)

1-way, 8KB
2-way, 8KB

4-way, 8KB
2-way, 16KB

4-way, 16KB
2-way, 32 KB

4-way, 32 KB

(c) (d)
Fig. 7. Information leakage in DES and GDK library with respect to different observers

Experience with DES: Data Encryption standard (DES) [4] is a symmetric key algorithm for

electronic data. It encrypts 64 bit plaintext blocks with a 64 bit secret key (56 bits effective key with

one bit assigned for each byte as a parity check). Using 8KB caches, for example, DES leaks more

than 120 values for several key bytes (cf. Figures 7(a)-(b)). Our results summarize the potentially

insecure nature of DES, even if we only consider security leaks through cache behaviour.

Experience with RC4:We analyzed the OpenSSL version of RC4 (a stream cipher) implementation

with 64 bits keys for several cache configurations (from 8KB to 64KB). CHALICE highlights substantial
information being leaked about the first byte (in certain cases 254 values out of a total of 256). For

bigger cache sizes (e.g. > 16KB), such information leakage disappears, as the executions of RC4

only suffer the minimum number of misses to load all the memory blocks into the cache.

Experience with GDK Library: Figures 7(c)-(d) present the average information leakage discov-

ered in routines gdk_keyval_to_unicode and gdk_keyval_name from the Linux GDK library. We

observe several scenarios leading to a complete disclosure of information for the third and the

fourth input bytes (i.e. 255 out of 256 values are leaked). We discovered that the cache behaviour

of gdk_keyval_to_unicode and gdk_keyval_name is primarily dominated by the number of cold

cache misses, which, in turn is heavily influenced by the path executed in the respective routine.

Since we include path condition pc within our symbolic cache model Γ(pc) (cf. Constraint (18)), we
can accurately quantify the information leakage even in the presence of multiple program paths.

Evaluating constant-time implementation: Constant-time programming is the current stan-

dard to counter timing-related leakage in cryptographic software. To evaluate this line of counter-

measures via CHALICE, we chose eight elliptic curve routines (total 12K lines of MIPS code) from
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Subject Observation via total miss count Observation via hit/miss of an arbitrary access

program Formula Peak mem. T1 Tbyte Tall Formula Peak mem. T1 Tbyte Tall
size size

AES [3] 144072 261M ≈ 20 sec 1 hour 16 hours 1580 105M < 1 sec ≈ 1 min 16 min

AES [4] 21444 129M ≈ 18 sec 77 min 20 hours 265 90M < 1 sec ≈ 2 min 45 min

DES [4] 53808 127M ≈ 10 sec 50 min 8 hours 1809 35M < 1 sec ≈ 1 min 12 min

RC4 [4] 38622 1.1G ≈ 4 sec 15 min 4 hours 490 32M < 1 sec ≈ 1 min 16 min

RC5 [4] 0 28.3M ≈ 15 sec ≈ 15 sec ≈ 15 sec 0 29.2M ≈ 14 sec ≈ 14 sec ≈ 14 sec

GDK 21 102M < 1 sec < 1 sec ≈ 2 min 21 100M < 1 sec < 1 sec ≈ 1 min

Table 3. T1 and Tbyte capture the average time for one solver call and to check information leakage for one
input byte, respectively. Tall captures the time taken to check information leakage via all predicates in Pbyte.

Observation via total miss count Observation via hit/miss of an arbitrary access

Cache

Constraint Peak T1 Tbyte Tall Constraint Peak T1 Tbyte Tall
size mem. size mem.

2-way, 8 KB 2510964 496M ≈ 2 min 8 hours 127 hours 37477 178M < 1 sec ≈ 6 min 1 hour

4-way, 8 KB 2507608 570M ≈ 2 min 8 hours 128 hours 27548 999M < 1 sec ≈ 1 min 19 min

2-way, 16 KB 2518182 655M ≈ 21 sec 1.5 hours 24 hours 28533 618M < 1 sec ≈ 3 min 53 min

4-way, 16 KB 2511030 487M ≈ 33 sec 2.3 hours 37 hours 74060 475M < 1 sec ≈ 12 min 3.2 hour

2-way, 32 KB 2518052 556M < 1 sec 3 min 47 min 76304 485M < 1 sec ≈ 2 min 30 min

4-way, 32 KB 2518118 820M ≈ 45 sec 3.2 hours 50 hours 78689 349M < 1 sec ≈ 3 min 41 min

Table 4. Analysis time w.r.t. cache configurations. T1, Tbyte and Tall have the same interpretation as Table 3.
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Fig. 8. Information leakage w.r.t. access-based observers (only bytes leaking information are shown)

FourQLib [1] – namely eccmadd, eccnorm, pt_setup, eccdouble, R1_to_R2, R1_to_R3, R2_to_R4
and R5_to_R1. For all routines, CHALICE reported zero leakage within five minutes.

Analysis time: Tables 3-4 outline the analysis time for timing-based observers. In most cases,

a single call to the solver, which reports information leakage via unsatisfiability checks (e.g. via
checking Constraint (6)), is efficient. Due to the repeated calls to the solver, checking the information

leakage, for the entire input space, takes significant time. For a given program, this time (i.e.Tall ) is
approximately the product ofTbyte and the number of bytes in the input space. This is because, our

analysis time mostly remains the same for any arbitrary input byte of a given program. However,

since CHALICE incorporates an anytime strategy, the bounds on the quantification of L(tI ) are valid
for any explored subsets of the program paths and input space. Finally, the analysis time can be

improved if we assign independent threads to check information leaked about each input byte.

6.3 Evaluation with Access-based Observers
Figures 8(a)-(b) outline our evaluation for AES [3] and GDK library with access-based observers. For

8KB direct-mapped caches, we observed that all cache lines are filled up irrespective of the value of

AES key. Hence, CHALICE did not discover any information leakage in AES for direct-mapped 8KB

caches (cf. Figure 8(a)). However, for set-associative caches, the occupied cache lines are dependent

, Vol. 1, No. 1, Article 1. Publication date: October 2017.



1:22 Chattopadhyay et al.

on the AES key. This leads to significant information being leaked from certain bytes, e.g., more

than 200 values (out of 256) on average were leaked from bytes 12 . . . 15, with a 4-way, 16KB cache.

For GDK-library routines, we observed that each program path often has a unique cache-access

behaviour (in terms of which cache lines are accessed). As a result, provided only the accessed

cache lines, an observer can accurately compute the executed program path. In our evaluation,

CHALICE highlights substantial information leakage from all input bytes of GDK-library routines

(cf. Figure 8(b)). This set of evaluations highlight that the core capabilities implemented within

CHALICE are effective to quantify side-channel leakage for both timing-based and access-based

observer models. For RC4 and RC5, CHALICE does not report any leakage. For the Openssl version

of AES and DES, CHALICE reports a leakage (i.e. L(tI )) of 2
11
and 2

39
, respectively, on average.

Observation via cache line accesses

Cache

Constraint Peak T1 Tbyte Tall
size mem.

1-way, 8 KB 9736 60M ≈ 2 sec 8 min 2.2 hours

2-way, 8 KB 423213 67M ≈ 6 sec 24 min 6.1 hours

4-way, 8 KB 220973 110M ≈ 7 sec 30 min 8.3 hours

2-way, 16 KB 827693 59M ≈ 11 sec 47 min 12 hours

4-way, 16 KB 423213 59M ≈ 7 sec 28 min 7.5 hours

2-way, 32 KB 1636516 67M ≈ 6 sec 25 min 6.7 hours

4-way, 32 KB 827556 59M ≈ 6 sec 27 min 7.1 hours

Table 5. Analysis time for access-based observers. T1, Tbyte
and Tall have the same interpretation as Table 3.

Analysis time: Table 5 outlines the

time taken by CHALICE for access-based
observers. We use AES [3] for this set of
experiments, as it takes the maximum

time. Since Γ(pce ) depends on the cache

size for access-based observers, we note

that the constraint size changes (cf. Ta-
ble 5) with respect to cache size. Never-

theless, the time taken for each solver

call remains short. As a result, due to

the incremental nature of our computa-

tion, CHALICE effectively quantifies the information leakage via access-based observation within

reasonable time.

6.4 Analysis Sensitivity w.r.t. Observation
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Fig. 9. L(tI ) in AES [3] w.r.t. observed miss count (1-
way, 8KB cache)

Since we quantify leakage from execution trace

tI , the leakage L(tI ) depends on the observed

cache behaviour, e.g., observed miss count. Fig-

ure 9 captures the information leakage with

respect to observed miss count. Although we

observe that L(tI ) mostly decreases with in-

creased miss count, there is no direct correla-

tion between the observed miss count and the

computed leakage. It is worthwhile to note that

results reported in Figure 9 are consistent with

the observation at the tail of the essentially

gaussian distribution captured in Figure 1.

7 RELATEDWORK
In the following, we will position our work in the research area by reviewing the related literature.

Static analysis of caches. Static cache analysis [19, 40] has been an active research topic for the last
two decades. Compared to static cache analysis [19, 40], CHALICE has significant flavors of testing

and debugging. Concretely, CHALICE can highlight poor choices of secret keys in implementing

encryption standards. CHALICE also highlights memory accesses that leak substantial information.

This can be leveraged to drive security-related optimizations.

Analysis of side channel. The closest to our work are approaches based on static analysis [23,

31, 32]. However, these analyses fail to detect critical scenarios when a particular observation leaks
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substantially more information than the rest [12]. CHALICE quantifies information leakage from ex-

ecution traces and it does not suffer from the aforementioned limitation. Moreover, CHALICE targets
arbitrary software binaries and it is not limited to the verification of constant-time cryptographic

software [7, 9]. However, due to the dynamic nature of the analysis embodied within CHALICE, it
only provides bounds on the information leakage for tested inputs. Existing work based on symbolic

execution [36] quantifies side-channel leakage via counting the number of observations [23, 32],

and it ignores the effect of micro-architectural entities, such as caches. CHALICE formulates cache

side-channel leakage via logical constraints, in contrast to the probabilistic modeling of cache and

prefetching [37]. Consequently, CHALICE provides deterministic bounds on the information being

leaked through the cache. Besides, contrary to the existing work [37], CHALICE targets arbitrary
programs beyond block ciphers. Existing work on side-channel vulnerability metric [22] quantifies

how well an attacker can retrieve information from a system, but, does not highlight the information
leaked to the attacker. CHALICE is complementary to the proposed metric [22] and CHALICE can be

combined with such metrics to build more advanced metrics for measuring side channel leakage.

Information leakage quantification. We note that existing techniques [15, 35] aim to quantify

information leakage via satisfiability checking and counting. These works are not targeted towards

micro-architectural side channels and they do not provide an anytime strategy to quantify the

information leakage. In contrast, CHALICE provides an anytime algorithm based on input space

partitioning and the refinement of these partitions. The refinement strategy guarantees to improve

the accuracy of computed cache side-channel leakage.

Software testing. In contrast to testing side-channel leakage [10, 17], our goal is to quantify

the leakage of information for a given cache behaviour. The overarching goal of CHALICE is to

combine its capability with the approaches based on software testing [10, 17]. To this end, CHALICE
quantifies the cache side-channel leakage for test cases generated via such approaches. In contrast

to a preliminary version of CHALICE [18], which only considers timing-based observers, our current

work accounts for both timing-based [6, 11] and access-based observers [30]. Moreover, we perform

a detailed analysis to show the sensitivity of cache side-channel leakage and analysis time with

respect to different cache configurations and for three different observer models.

Cache side-channel attacks. Over the last few decades, cache-based side-channel attacks have

emerged to be a prevalent class of security breaches for many systems [26]. The observer models

used in this paper are based on existing cache attacks [6, 11, 30]. However, in contrast to these

approaches, CHALICE does not aim to engineer new cache attacks. Based on a configurable observer

model, CHALICE aims to quantify the information leakage for a given cache attack. We believe that

CHALICE is generic to incorporate advanced attack scenarios [14, 28, 29, 34, 43, 44] that are currently
not handled in this paper. In general, as long as cache attacks are expressed via the intuition given

in Section 5, we can instantiate CHALICE to quantify the information leakage via such attacks.

Countermeasures against side-channel attacks. CHALICE is orthogonal to approaches propos-

ing countermeasures [21, 39, 42] via hardware [42], compiler [39] or runtime environment [21]. Of

course, CHALICE can validate the proposed countermeasures mitigating cache side channels.

In summary, we propose a new approach to quantify cache side-channel leakage from execution

traces and demonstrate that such an approach can highlight critical information leakage scenarios

that are impossible to discover by competitive static or logical analysis.

8 CONCLUDING REMARKS

Threats to validity. In CHALICE, we assume an attacker model where the cache architecture (i.e.
the number of cache sets, line size, associativity and replacement policy) is known to the adversary.

We also assume that the adversary can clearly distinguish the execution profile of victim software.
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In practice, however, an adversary may not accurately know the cache architecture or the execution

profile of the victim software. Hence, she may not be able to retrieve as much information as

computed via CHALICE. Since CHALICE is aimed for security testing, we believe that involving a

strong attacker model is justified. However, we note that CHALICE should be used together with a

test generation tool [17] that obtains sufficient coverage of observations made by the attacker. This

is because, CHALICE quantifies leakage from a given observation. In its current state, CHALICE does

not provide capabilities to fix cache side channels. Hence, the output generated by CHALICE needs

to be investigated manually for reducing information leakage. Potential debugging strategies will

be to restructure the code, selectively bypassing the cache or using software-controlled memory

for certain memory accesses. Finally, the effectiveness and efficiency of CHALICE depends on the

granularity of checking (i.e. πbit or πbyte in Table 2). We observed that for realistic programs, the

choice πbyte provides valuable insight on the information leakage. Although we can incrementally

refine the granularity of checks based on the obtained results, it is currently not implemented and

can be considered in the future release of CHALICE.

Attackmodels. CHALICE currently does not handle active adversaries that aim to retrieve informa-

tion by manipulating cache states on-the-fly [44] or target shared last-level caches [34]. Moreover, as

CHALICE does not incorporate the capabilities for out-of-order and speculative execution, currently,
CHALICE does not quantify the information leakage for recently discovered Meltdown [24] and

Spectre [25]. Nevertheless, our powerful symbolic reasoning framework allows us to consider

additional micro-architectural features (e.g. shared caches, out-of-order execution and specula-

tion) while formulating Γ(pce ) (cf. subsection 4.1). This can be considered in a future extension of

CHALICE. We note that the central idea behind our information leakage quantification, as described

in subsection 3.2-subsection 3.3, can be leveraged without any change for such extension.

Perspective. In this paper, we have shown that the mechanism of CHALICE is essential for quan-
tifying the amount of information that can leak through memory performance and cache-access

statistics. Besides security testing, CHALICE can be used to discover bugs while writing constant-time

cryptographic applications. We demonstrate the usage of CHALICE to highlight critical information

leakage scenarios in OpenSSL and Linux GDK libraries, among others. In future work, we will

explore the synergy between our input partitioning scheme and model counting to reduce the

number of calls to solvers and speed up the quantification process. We hope that the core idea of

CHALICE impacts regular activities in software engineering including regression testing.
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