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ABSTRACT

Cache timing attacks allow attackers to infer the properties of a

secret execution by observing cache hits and misses. But how much

information can actually leak through such attacks? For a given

program, a cache model, and an input, our CHALICE framework

leverages symbolic execution to compute the amount of informa-

tion that can possibly leak through cache attacks. At the core of

CHALICE is a novel approach to quantify information leak that can

highlight critical cache side-channel leaks on arbitrary binary code.

In our evaluation on real-world programs from OpenSSL and Linux

GDK libraries, CHALICE efectively quantiies information leaks:

For an AES-128 implementation on Linux, for instance, CHALICE

inds that a cache attack can leak as much as 127 out of 128 bits of

the encryption key.
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1 INTRODUCTION

Cache timing attacks [12] are among the best known side channel

attacks [23] to determine secret features of a program execution

without knowing its input or output. The general idea of a timing

attack is to observe, for a known program, a timing of cache hits

and misses, and then to use this timing to determine or constrain

features of the program execution, including secret data that is

being processed.
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Figure 1: For a ixed input message, the plot shows the

number of keys leading to a given number of cache misses

incurred by executing AES-128 encryption (sample size =

256000 keys)

The precise nature of the information that can leak through

such attacks depends on the cache and its features, as well as the

program and its features. Consequently, given a model of the cache

and a program run, it is possible to analyze which and how much

information would leak through a cache attack. This is what we do

in this paper. Given a program execution and a cache model, our

CHALICE approach automatically determines which bits of the input

would actually leak through a potential cache attack.

As an example, consider an implementation of the popular AES

encryption algorithm. Given an input and an encryption key (say,

128 bits for AES-128), CHALICE can determine which and howmany

of the bits of the key would leak if the execution were subject to a

cache attack. To this end, CHALICE uses a novel symbolic execution

over the given concrete input. During symbolic execution, CHALICE

derives symbolic timings of cache hits and misses; these then again

reveal under which circumstances individual bits of encryption key

may leak.

The reason CHALICE works is that the timings of cache hits and

misses are not uniformly distributed; and therefore, some speciic

timings may reveal more information than others. Figure 1 demon-

strates the execution of an AES-128 implementation [4] for a ixed

input and 256,000 diferent keys, inducing between 213 and 279

cache misses. We see that the distribution of cache misses is essen-

tially Gaussian; if the number of cache misses is average, there are

up to 13,850 keys which induce this very cache timing. If we have an

extreme cache timing with 213 misses (the minimum) or 279 misses

(the maximum), then there are only 2 keys that induce this very

timing. CHALICE can determine that for these keys, 90 of 128 bits

would leak if the execution were subjected to a cache attack, which

in practice would mean that the remaining 38 bits could be guessed

through brute forceÐwhereas other łaveragež keys would be much

https://doi.org/10.1145/3127041.3127044
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more robust. For each key and input, CHALICE can precisely predict

which bits would leak, allowing its users to determine and ind the

best alternative.1

It is this precision of its symbolic analysis that sets CHALICE apart

from the state of the art. Existing works [22, 28] use static analysis

alone to provide an upper bound on the potential number of dif-

ferent observations that an attacker can make. This upper bound,

however, does not suice to choose between alternatives, as it ig-

nores the distribution of inputs: It is possible that certain inputs

may leak substantially more information than others. Not only that

such an upper bound might be imprecise, it is also incapable to

identify inputs that exhibit substantial information leakage through

side channels. Given a set of inputs (typically as part of a testing

pipeline), CHALICE can precisely quantify the leak for each input,

and thus provide a full spectrum that characterizes inputs with

respect to information leakage.

The remainder of this paper is organized as follows. After giv-

ing an overview of CHALICE (section 2), we make the following

contributions:

(1) We present CHALICE, a new approach to precisely quantify

information leak in execution and its usage in software testing

(section 3).

(2) We introduce a symbolic cache model to handle various cache

conigurations and instantiate CHALICE to detect cache side

channel leakage (section 4). This is the irst usage of symbolic

execution to quantify information leakage by relating cache

and program states.

(3) We demonstrate generalizations across multiple observer

models (section 5).

(4) We provide an implementation based on LLVM and the KLEE

symbolic virtual machine. Source code of CHALICE and all

experimental data is publicly available: https://bitbucket.org/

sudiptac/chalice

(5) We evaluate our CHALICE approach (section 6) to show how

we quantify the information leaked through execution in

several libraries, includingOpenSSL and Linux GDK libraries,

and show that the information leak can be as high as 25116

for certain implementations [4] of AES-128.

After discussing related work (section 7), we close with conclusion

and consequences (section 8).

2 OVERVIEW

In this section, we convey the key insight behind our approach

through examples. In particular, we illustrate how CHALICE is used

to quantify information leak from the execution trace of a program.

Motivating Example. Let us assume that our system contains

a direct-mapped data cache of size 512 bytes. Figures 2(a)-(c) show

diferent code fragments executed in the system. For the sake of

clarity, we use both assembly-level and source-level syntaxes. Also

for clarity, we assume that conditional checks, in this example, do

1In the best of all worlds, one might have an implementation of every critical algorithm,
such as an encryption routine, to have a uniform distribution over cache misses. But
neither does such implementations exist that would be eicient, nor do we know
whether such implementations can exist; and replacing a well-studied algorithm like
AES by some other algorithmwith uniform distributionmay induce other, yet unknown
risks.

not involve any access to the data cache (i.e. k is assigned to a regis-

ter). However, it is worthwhile to note that our framework CHALICE

handles arbitrary execution traces and it handles all instructions

with arbitrary cache behaviours. The mapping of diferent vari-

ables into the cache is shown in Figure 2(d). Let us assume that the

code fragments of Figures 2(a)-(c) are executed with some arbitrary

(and unknown) value of k . Broadly, CHALICE answers the following

question: Provided only the cache performance (e.g. cache hit/miss

sequence) from such executions, how much information about the

sensitive input k is leaked?

The cache performance induces a partition on the program input

space. Let us capture the cache performance via a sequence of hits

(h) and misses (m). In Figure 2(a), for all values of k between 0 and

127, we observe two cache misses due to the irst two memory

accesses, p[k] and q[255 − k], respectively. The second access to

p[k] is a cache hit, for k ∈ [1, 127]. However, if k = 0, the content of

p[k] will be replaced by q[255 − k], resulting in a cache miss at the

second access ofp[k]. For k ∈ [128, 255],p[k] is never replaced once

it is loaded into the cache. Therefore, the second access to p[k] is a

cache hit fork ∈ [128, 255]. In other words, we observe the sequence

of cache hits and misses to induce the following partition on the

input space: k = 0 (hit/miss sequence = ⟨m,m,m⟩) and k ∈ [1, 255]

(hit/miss sequence = ⟨m,m,h⟩). A similar exercise for the code in

Figure 2(b) results in the following partition of the sensitive input

space: k ∈ [0, 255] ∧ (k mod 2 = 0) (hit/miss sequence = ⟨m,m,m⟩)

and k ∈ [0, 255] ∧ (k mod 2 , 0) (hit/miss sequence = ⟨m,m,h⟩).

Key observation. In this work, we stress the importance of

quantifying information leaks from execution traces and not from the

static representation of a program. To illustrate this, consider the

input partitions created for code fragments in Figures 2(a)-(b). We

emphasize that observing the cache hit/miss sequence ⟨m,m,m⟩,

from an execution of the code fragment in Figure 2(a), results in

complete disclosure of sensitive input k . On the contrary, observing

the sequence ⟨m,m,m⟩, from an execution of the code fragment

in Figure 2(b), will only reveal the information that k is odd. Such

information still demands a probability of 1
128 in order to correctly

guess k at irst attempt. This is in contrast to accurately guessing

the correct value of k at irst attempt (as happened through the

sequence ⟨m,m,m⟩ for Figure 2(a)). In order to ix the cache side-

channel leak in Figure 2(a), we can reorder the code as shown in

Figure 2(c).

Limitations of static analysis. Existing works in static anal-

ysis [22, 28] correlate the number of possible observations (by an

attacker) with the number of bits leaked through a side channel.

We believe this view can be dangerous. Indeed, both code frag-

ments in Figures 2(a)-(b) have exactly two possible cache hit/miss

sequences (hence, observations), for arbitrary values ofk . Therefore,

approaches based on static analysis [22, 28] will consider these two

code fragments equivalent in terms of cache side-channel leakage.

As a result, a crucial information leak scenario, such as the execu-

tion of code fragment in Figure 2(a) with k = 0, will go completely

unnoticed. Techniques based on verifying that programs execute

in constant time typically check that memory accesses do not de-

pend on sensitive inputs [6, 10]. Yet, most implementations do not

execute in constant time. Besides, programs such as in Figure 2(c)

https://bitbucket.org/sudiptac/chalice
https://bitbucket.org/sudiptac/chalice
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/* k is sensitive input */ 

char p[256]; 

unsigned char k;   

char q[256]; 

load  reg1, p[k] 

if (k <= 127) 

load  reg2, q[255-k] 

else 

load  reg2, q[k-128] 

add   reg1, reg2 

store reg1, p[k]

k=0 (<m,m,m>) 

1 ≤ k ≤ 255 (<m,m,h>) 

/* k is sensitive input */ 

char p[256]; 

unsigned char k;   

char q[256]; 

load  reg1, q[255] 

if (k <= 127) 

load  reg2, p[k%2] 

else 

load  reg2, p[128*(k%2)]  

add   reg1, reg2 

store reg1, q[255]

k%2==0 (<m,m,m>) 

k%2==1 (<m,m,h>) 
0 ≤ k ≤ 255 (<m,m,h>) 

/* k is sensitive input */ 

char p[256]; 

unsigned char k;   

char q[256]; 

if (k <= 127) 

load  reg2, q[255-k] 

else 

load  reg2, q[k-128] 

load  reg1, p[k] 

add   reg1, reg2 

store reg1, p[k]

p[0], q[255]

p[1]

k

q[0]

q[1]

q[254]

Cache

256 bytes

256 bytes

p[255]

set(&p[0])= 0

set(&p[1])=1

set(&q[254])=511

set(&q[255])= 0

(a) (b) (c) (d)

Figure 2: k is a sensitive input. (a)-(c) three code fragments and respective partitions of the input space with respect to cache

hit/miss sequence (reд1, reд2 represent registers), (d) mapping of program variables into a 512-byte direct-mapped cache (q[255]

and p[0] conlict in the cache)

have accesses that may depend on sensitive inputs without leak-

ing information about it to a cache-performance observer. Hence,

we track the relationship between input and cache performance

through a symbolic model of the cache.

Limitations of side-channel vulnerability metrics. In con-

trast to existing works on measuring cache side-channel leak-

age [21], we do not aim to check the strength of an attacker to

observe information through side channel. Although promising, this

work [21] fails to detect the information low between sensitive

inputs and observed performance. As a result, the side-channel vul-

nerability metric can only quantify how well an attacker can retrieve

information from a system, but, does not highlight the information

potentially leaked to the attacker. Of course, we believe our work is

complementary to the metrics proposed in [21] and CHALICE could

be combined with such metrics to build more advanced metrics for

measuring side channel leakage. Such metrics could consider both

information leaked by the system as well as information that could

be retrieved by an attacker.

The usage of CHALICE. CHALICE is aimed to be used for vali-

dating security properties of software. Given a test suite (i.e. a set

of concrete test inputs) for the software, CHALICE is used to quan-

tify the information leaked for each possible observation obtained

from this test suite. In our earlier works [17] [11], we have shown

how such an efective test suite can be generated automatically.

Since the observation by an attacker (e.g. number of cache miss)

corresponds to a (set of) test input(s), CHALICE presents how much

can be deduced about such inputs from the respective observation.

In other words, our framework CHALICE its the role of a test ora-

cle [9] in the software validation process. For instance, if CHALICE

reports substantial information leakage, the test inputs leading to

the respective observation should be avoided (e.g. avoiding a łweak"

encryption key) or the program needs to be restructured to avoid

such information leak.

How CHALICE works. Let us assume that we execute the code

in Figure 2(a) with some input I ∈ [0, 255] and observe the trace

tI ≡ ⟨m,m,m⟩. Given only the observation tI , CHALICE quantiies

how much information about program input I is leaked. CHALICE

symbolically executes the program and it tracks all memory ac-

cesses dependent on the sensitive input k . Concretely, CHALICE

constructs Γ(0 ≤ k ≤ 127) and Γ(128 ≤ k ≤ 255), which encode

all cache hit/miss sequences for inputs satisfying 0 ≤ k ≤ 127 and

128 ≤ k ≤ 255, respectively. While exploring the path for inputs

k ∈ [0, 127], we record a sequence of symbolic memory addresses

⟨&p[k],&q[255−k],&p[k]⟩, where &x denotes the address of value

x . Since we started execution with an empty cache, the irst access

to p[k] inevitably incurs a cache miss, irrespective of the value of k .

The subsequent accesses can be cache hits, cold misses (irst access

to the respective cache line) or eviction misses (non-irst access

to the respective cache line). For instance, we check whether the

łstorež instruction sufers a cold data-cache miss as follows:

(0 ≤ k ≤ 127) ∧ (set (&p[k]) , set (&q[255 − k]))

∧ (set (&p[k]) , set (&p[k]))
(1)

where set (&x ) captures the cache line where memory address &x

is mapped to. Intuitively, the constraint checks whether access to

p[k] (via the łstorež instruction) touches a cache line for the irst

time. Constraint (1) is clearly unsatisiable, leading to the fact that

the łstorež instruction does not access a cache line for the irst

time during execution.

Subsequently, we check whether the second access to p[k] can

sufer an eviction miss. To this end, we check whether q[255 − k]

can evict p[k] from the cache as follows:

(0 ≤ k ≤ 127) ∧ (set (&p[k]) = set (&q[255 − k]))

∧ (taд(&p[k]) , taд(&q[255 − k]))
(2)

where taд(&x ) captures the cache tag associated with the accessed

memory block. Intuitively, Constraint (2) is satisied if and only if

q[255 − k] accesses a diferent memory block as compared to p[k],

but q[255 − k] and p[k] access the same cache line (hence, causing

an eviction before p[k] was accessed for the second time). In this

way, we collect Constraints (1)-(2) to formulate the cache behaviour

of a memory access into Γ(0 ≤ k ≤ 127).

After constructing Γ(0 ≤ k ≤ 127), we explore the path for

inputs k ∈ [128, 255] and record the sequence of memory accesses
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p[k], q[k − 128] and p[k]. Performing a similar exercise, we can

show that the second access to p[k] cannot be a cold miss along

this path. In order to check whether the second access to p[k] was

an eviction miss along this path, we check whether q[k − 128] can

evict p[k] from the cache as follows:

(128 ≤ k ≤ 255) ∧ (set (&p[k]) = set (&q[k − 128]))

∧ (taд(&p[k]) , taд(&q[k − 128]))
(3)

Constraint (3) is used to formulate Γ(128 ≤ k ≤ 255) and is

unsatisiable. This is because only p[0] shares a cache line with

q[255] (i.e. set (&p[0]) = set (&q[255])) and therefore, set (&p[k]) =

set (&q[k − 128]) is evaluated false for 128 ≤ k ≤ 255. As a re-

sult, the second access to p[k] is not a cache miss for any input

k ∈ [128, 255].

From the observation ⟨m,m,m⟩, we know that the second access

to p[k] was a miss. From the discussion in the preceding paragraph,

we also know that this observation cannot occur for any inputs

k ∈ [128, 255]. Therefore, the value of k must result in Constraint (2)

satisiable. Constraint (2) is unsatisiable if we restrict the value

of k between 1 and 127. This happens based on the fact that only

p[0] is mapped to the same cache line as q[255] (cf. Figure 2(d)).

As a result, CHALICE reports 255 (127 for the if branch and 128

for the else branch in Figure 2(a)) values being leaked for the

observation ⟨m,m,m⟩. In other words, CHALICE accurately reports

the information leak (i.e. k = 0) for the observation ⟨m,m,m⟩.

Relation to entropy. In the preceding example, CHALICE com-

putes the number of impossible values of k , for a given observation.

This, in turn, can be used to compute the uncertainty to guess k ,

provided the respective observation occurred. For instance, if the

attacker observes the sequence ⟨m,m,m⟩, then the uncertainty to

guess k is ł0" bit (as exactly one value of k is possible for this obser-

vation). If we assume that k was uniformly distributed, the initial

uncertainty to guess k was 8 bits (since k is an 8-bit input in the

example). This leads to a reduced uncertainty of 8 bits when the

sequence ⟨m,m,m⟩ was observed by the attacker.

3 FRAMEWORK

In this section, we formally introduce CHALICE.

3.1 Foundation

3.1.1 Threat model. Side-channel attacks are broadly classiied

into synchronous and asynchronous attacks [30]. In a synchro-

nous attack, an attacker can trigger the processing of known inputs

(e.g. a plain-text or a cipher-text for encryption routines), whereas

such a possibility is not available for asynchronous attacks. Syn-

chronous attacks are clearly easier to perform, since the attacker

does not need to infer the start and end of the targeted routine un-

der attack. For instance, in a synchronous attack, the attacker can

trigger encryption of known plaintext messages and observe the

encryption-timing [12]. Since CHALICE is a software validation tool

with the aim of producing side-channel resistant implementations,

we assume the presence of a strong attacker in this paper. Therefore,

we consider the attacker can request and observe the execution

(e.g. number of cache miss) of the targeted routine. We also assume

that the attacker can execute arbitrary user-level code on the same

processor running the targeted routine. This allows the attacker

Program 

(P)
Symbolic Execution

Path 

condition 

(pce)

Memory  

Addresses

Symbolic cache behaviour  

�(pce)

Predicates on input 

(π)

Observation  

(e.g. trace of hit/miss)

Information leak

L(tI)

Observer Model  

(O)
(tI ∈ ∑*)

Observation Constraint 

(ΦO)

Figure 3: The framework CHALICE.

to lush the cache before the targeted routine starts execution and

therefore, reduce the external noise in the observation. The attacker,

however, is incapable of accessing the address space of the target

routine.

3.1.2 Notations. The execution of program P on input I results

in an execution trace tI . tI is a sequence over the alphabet Σ = {h,m}

where h (respectively,m) represents a cache hit (respectively, cache

miss). Our proposed method in CHALICE quantiies the informa-

tion leaked through tI . We capture this quantiication via L (tI ).

We assess the information leakage with respect to an observer. An

observer is a mapping O : Σ∗ → D where D is a countable set. For

instance, an observer O : Σ∗ → N can count the number of misses

and will associate both sequences ⟨m,h,m,h,h⟩ and ⟨m,m,h,h,h⟩

to 2. It will therefore not diferentiate them. The most precise ob-

server would be the identity mapping on Σ∗. However, an observer

that tracks preixes of length two would be enough to diferentiate

⟨m,h,m,h,h⟩ and ⟨m,m,h,h,h⟩.

We use the variable missi to capture whether or not the i-th

memory access was a cache miss during execution. The observa-

tion by an attacker, over the execution for an arbitrary input and

according to the observer model O, is considered via the obser-

vation constraint ΦO . ΦO is a symbolic constraint over variables

{miss1,miss2, . . . ,missn }. For instance, ΦO ≡
(

∑n
i=1 missi = 100

)

accurately captures that the attacker observes 100 cache misses

in an execution manifesting n memory accesses. For the sake of

formulation, we use ΦO,e to mean the interpretation of an ob-

servation constraint ΦO along a program path e . For example,

ΦO,e ≡
(

∑300
i=1 missi = 100

)

if ΦO ≡
(

∑n
i=1 missi = 100

)

and the

path e has 300 memory accesses. ΦO,e amounts to f alse if ΦO
requires a diferent number of memory accesses than those pro-

vided by the path e . Given only ΦO to be observed by an attacker,

CHALICE quantiies how much information about the respective

program input is leaked.

The central idea of our information leak detection is to capture

the cache behavior via symbolic constraints. Let us consider a set

of inputs I that exercise the same execution path with n memory

accesses. We use Γ(I) to accurately encode all possible combinations

of values of variables {miss1,miss2, . . . ,missn }. Therefore, if Γ(I) ∧

ΦO is unsatisiable, we can deduce that the respective observation

ΦO did not occur for any input I ∈ I.

We now describe how L (tI ) is computed based on the notations

and the intuition mentioned in the preceding.
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3.2 Quantifying Information Leak in Execution

Figure 3 provides an outline of our entire framework. We symboli-

cally execute a program P and compute the path condition [24] for

each explored path. Such a path condition symbolically encodes

all program inputs for which the respective program path was fol-

lowed. Our symbolic execution based framework tracks all memory

accesses on a taken path and therefore, enables us to characterize,

for all symbolic arguments satisfying the path condition, the set of

all associated cache behaviors.

Recall that we use Γ(I) to capture possible cache hit/miss se-

quences in an execution path, which was activated by a set of

inputs I. In an abuse of notation, we capture the set of inputs I via

path conditions. For instance, in Figure 2(a), we use Γ(0 ≤ k ≤ 127)

to encode all possible cache hit/miss sequences for inputs activating

the If branch.

For an arbitrary execution path e , let pce be the path condition.

Along this path, we record each memory access and we consider

its cache behavior via variablesmissi .missi is set to 1 (resp. 0) if

and only if the i-th memory access along the path encounters a

cache miss (resp. hit). Given n to be the total number of memory

accesses along the path e , we formulate Γ(pce ) to bound the value

of {miss1,miss2, . . . ,missn }. In particular, any solution of Γ(pce ) ∧

(missi = 1) captures a concrete input I |= pce and such an input I

leads to an execution where the i-th memory access is a cache miss.

Therefore, if an observation ΦO happens to be for input I |= pce ,

then Γ(pce ) ∧ ΦO,e is always satisiable.

We capture the information leak through trace tI as follows:

L (tI ) = 2N − |
∨

e ∈Paths

(

Γ(pce ) ∧ ΦO,e

)

|sol (4)

where N is size of program input (in bits), ΦO,e is the interpre-

tation of the observation constraint on path e , Paths is the set of

all program paths and pce is the path condition for program path

e . |X|sol captures the number of solutions satisied by predicate

X. It is worthwhile to note that |
∨

e ∈Paths

(

Γ(pce ) ∧ ΦO,e

)

|sol ac-

curately captures the number of program inputs that exhibit the

observation satisied by ΦO . In other words, Equation (4) quantiies

the number of program inputs that do not exhibit the observation,

as captured by ΦO . Hence, if the attacker observes ΦO , then she

can deduce as many as L (tI ) inputs were impossible for ΦO .

Relation to entropy. The secrecy of a sensitive input is usually

measured as the uncertainty of an attacker to guess the respective

input. This uncertainty can be computed via several metrics, such

as Shannon entropy [19]. For a given distribution λ for an N -bit

sensitive input k , Shannon entropy is computed as follows:

H (λ) = −
∑

k ′∈[0,2N )

λ(k ′) log2 λ(k
′) (5)

If λ is a uniform distribution, initial uncertaintyH (λ) = N .

For observation constraint ΦO , the remaining uncertainty can

be computed as follows:

H (λΦO ) = −
∑

k ′∈[0,2N )

λΦO (k
′) log2 λΦO (k

′) (6)

where λΦO (k
′) denotes the probability that the sensitive input value

is k ′ given the observation satisies ΦO .

Recall that |
∨

e ∈Paths

(

Γ(pce ) ∧ ΦO,e

)

|sol captures the number

of inputs satisfying observation constraint ΦO . Hence, if the at-

tacker assumes that all values of the sensitive input are equally

probable for observation constraint ΦO , we get

H (λΦO ) = log2
���
∨

e ∈Paths

(

Γ(pce ) ∧ ΦO,e

) ���sol (7)

In summary, less the number of satisfying solutions for the for-

mula
∨

e ∈Paths

(

Γ(pce ) ∧ ΦO,e

)

, less the uncertainty to guess the

sensitive input k given ΦO holds. In the next section, we show

how to compute |
∨

e ∈Paths

(

Γ(pce ) ∧ ΦO,e

)

|sol in an incremental

fashion.

3.3 Cartesian Bounding of Information Leak

We justify and describe in the following a simple technique to

tackle the scalability challenges. These challenges are faced by

model counting for quantifying side-channel leakage.

3.3.1 Challenges to compute L (tI ). Computing the exact value

of L (tI ) can become infeasible for the targeted problems in this

paper. For instance, the input domain of targeted programs are

as big as 2128 and the number of CNF clauses for an equivalent

#SAT problem varies from 550K to two Millions, with hundreds of

thousands of variables. Such a problem scale is several orders of

magnitude higher than the programs evaluated by state-of-the-art

model counting tools [14] supporting non-linear constraints. Specif-

ically, we evaluated a scalable, but approximate model counter [16]

and discovered it is incapable to deal with the length and the number

of clauses generated for our subject programs.

In order to solve the aforementioned scalability issues, we lever-

age the capability of our framework to symbolically reason about

partitions over input values. This has two crucial advantages: 1)

we have an anytime algorithm to quantify the cache side-channel

leakage. This means the longer time CHALICE runs, the more accu-

rately it quantiies the information leakage. Moreover, our proposed

approach is inherently parallel. 2) CHALICE not only quantiies the

leakage, it also characterizes the equivalence class of secrets for

a given observation. This is critical to identify weak secrets, such

as weak passwords in password checker or weak keys in encryp-

tion routines. Finally, our proposed scheme also provides strong

guarantees on the derived bound for L (tI ).

In future, we will explore the synergy between our input parti-

tioning scheme and model counting. Speciically, we can use model

counting to reduce the number of solver calls required for an in-

put partition. Similarly, model counting approaches can use our

proposed partitioning to limit the search in an input-partition and

potentially speed up the counting process.

3.3.2 Input space partitioning to compute L (tI ). Consider a set

I of program inputs containing all possible N -bit input values, i.e.,

| I| = 2N . A partition P of I is a set {P[j] | 1 ≤ j ≤ |P |} of disjoint

non-empty sets whose union coincides with I. Here, we write |P |

to mean the size of P, i.e. the number of subsets of I deined by the

partition P. For example, a possible partition of size 2 is the one that

partitions program inputs into two sets depending on the value

of their irst bit. Assume K partitions P1, . . . , PK of the input set

I for which no (P1[i1] ∩ P2[i2] ∩ . . . ∩ PK [iK ]) is empty, for any
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i j : 1 ≤ i j ≤ |Pj |. A {P1, . . . , PK }-based Cartesian partitioning of I,

written (P1 ⊠ P2 ⊠ . . .⊠ PK ), is the partition of I that corresponds

to the intersection of all partitions P1, . . . , PK , i.e, whose elements

are the sets (P1[i1] ∩ P2[i2] ∩ · · · ∩ PK [iK ]) where i j : 1 ≤ i j ≤

|Pj |. For each tuple (P1[i1], . . . , PK [iK ]) of the cross product (P1 ×

. . . × PK ), we write [[(P1[i1], . . . , PK [iK ])]] to mean the element

(P1[i1] ∩ P2[i2] ∩ . . . ∩ PK [iK ]) of the Cartesian partitioning (P1⊠

. . .⊠ PK ). For a subset T of the cross product (P1 × P2 × . . . × PK ),

we let [[T ]] mean the union ∪t ∈T [[t]]. A Cartesian partitioning

(P1⊠ . . .⊠PK ) is said to be complete if each [[(P1[i1], . . . , PK [iK ])]]

is a singleton of I, in which case, | I| = 2N = |P1 | × . . . × |PK |

holds. Given a subset S of I and a Cartesian partitioning (P1⊠ . . .⊠

PK ) of I, we write (S ) |(P1⊠...⊠PK ) to mean the set of elements of

(P1 ⊠ . . . ⊠ PK ) whose denotations intersects S . Observe that S =

[[(S ) |(P1⊠...⊠PK )]] in case (P1⊠. . .⊠PK ) is complete. The following

lemma bounds information leak by requiring only Σi :1≤i≤K |Pi |

solver calls:

Lemma 3.1 (Cartesian leakage bound). Assume a complete

Cartesian partitioning (P1 ⊠ . . . ⊠ PK ) of I and a trace tI that

results in the observation constraint ΦO . If U
ΦO
Pi
⊆ Pi is the set

of Pi elements for which ΦO is unfeasible, then L (tI ) ≥ 2N −
∏

1≤i≤K

(

|Pi | − |U
ΦO
Pi
|
)

.

Proof. |
∨

e ∈Paths

(

Γ(pce ) ∧ ΦO,e

)

|sol is the size of the set SΦO
of all program inputs I that exhibit the observation ΦO , i.e., satisfy-

ing some path conditionpce where (Γ(I )∧ΦO,e ) holds. Observe that

SΦO , which coincides with the denotation of
(

SΦO

)

|(P1⊠...⊠PK )
, is

included in the denotation of
((

SΦO

)

|P1
×
(

SΦO

)

|P2
×. . .×

(

SΦO

)

|PK

)

.

Hence, |SΦO | ≤ Πi :1≤i≤K
���(SΦO ) |Pi ���. We conclude by observing that

(

SΦO

)

|Pi
= Pi \ U

ΦO
Pi

since U
ΦO
Pi

is the subset of Pi for which ΦO is

unfeasible. □

Lemma 3.1 holds for any complete partitioning of the set of in-

puts. In practice, we can generate the K partitions by sampling the

N -bit input into K equal segments. We then constrain the search

space of the solver by restricting the value of each such input seg-

ment. For instance, let us assume k is the program input and ki
captures the i-th input segment. The i-th partition is deined using

2
N
K predicates πi [v] ≡ (ki = v ) for v ∈

{

0, 1, . . . , 2
N
K − 1

}

. For

a segment i , the predicates in {πi [v] | 0 ≤ v < 2
N
K } are pairwise

unsatisiable and partition all input values into 2
N
K elements. The

obtained Cartesian partitioning is complete. We use each πi [v] to

guide the solver and search for a solution only in the input space

where the i-th input segment is v . Since, we have K diferent seg-

ments, we generate a total of
(

K · 2
N
K

)

diferent predicates, each

characterizing an element of some partition. An appealing feature

of this process is that all K · 2
N
K predicates can be generated inde-

pendently and result in parallelizable unsatisiability checks. Given

a partition i , we compute U
ΦO
Pi

as the number of predicates πi [v]

for which the following is unsatisiable:
∨

e ∈Paths

(

Γ(pce ) ∧ ΦO,e ∧ πi [v]
)

(8)

It is worthwhile to note that setting K = 1 amounts to enumerating

all solutions as in Equation (4). This yields an exact but expen-

sive measure of information leakage. In contrast, choosing K = N

amounts to checking information leak at bit-level. This results

in a scalable amount of solver calls (only 2N ) but yields a poten-

tially much weaker bound on information leakage. Therefore, K

provides a tunable parameter for the detection of information leak-

age. We can formalize this observation by introducing the notion

of Cartesian reinement. Assume two Cartesian partitioning of I,

(P1 ⊠ . . .⊠ PK ) and (Q1 ⊠ . . .⊠ QM ). We say that (P1 ⊠ . . .⊠ PK )

reines, or is more precise than, (Q1 ⊠ . . .⊠ QM ) if there is a surjec-

tive function h : {1, . . . ,M } → {1, . . . ,K } such that each partition

Pi , for i : 1 ≤ i ≤ K , coincides with the Cartesian partitioning

(Qj1 ⊠ . . . ⊠ Qj |h−1 (i ) | ) where
{
j1, . . . , j |h−1 (i ) |

}
= h−1 (i ).

Lemma 3.2 (Cartesian bound refinement). Assume two com-

plete Cartesian partitioning of I where (P1 ⊠ . . . ⊠ PK ) reines

(Q1 ⊠ . . . ⊠ QM ). For any trace tI that results in the observation

constraint ΦO , the Cartesian leakage bound obtained with (P1 ⊠

. . . ⊠ PK ) is always larger or equal than the one obtained with

(Q1 ⊠ . . . ⊠ QM ), i.e., L (tI ) ≥ 2N −
∏

1≤i≤K

(

|Pi | − |U
ΦO
Pi
|
)

≥

2N −
∏

1≤i≤M

(

|Qi | − |U
ΦO
Qi
|
)

.

Proof. Let SΦO be the subset of program inputs I that exhibits

the observation ΦO , i.e., containing all program inputs I satisfying

some path condition pce where (Γ(I ) ∧ ΦO,e ) holds. Observe that

SΦO , which coincides with the denotation of
(

SΦO

)

|(P1⊠P2⊠...⊠PK )

is subset of the denotation of
((

SΦO

)

|P1
⊠

(

SΦO

)

|P2
⊠. . .⊠

(

SΦO

)

|PK

)

which is subset of the denotation of
((

SΦO

)

|Q1
×
(

SΦO

)

|Q2
× . . . ×

(

SΦO

)

|QM

)

. This leads to the following crucial inequalities: |SΦO | ≤

Πi :1≤i≤K
���(SΦO ) |Pi ��� ≤ Πi :1≤i≤M

���(SΦO ) |Qi ���. We conclude by observ-

ing that
(

SΦO

)

|Pi
= Pi \ U

ΦO
Pi

since U
ΦO
Pi

is the subset of Pi for which

ΦO is unfeasible and similarly
(

SΦO

)

|Qi
= Qi \ U

ΦO
Pi

. □

Due to the classic path explosion problem in symbolic execution,

it is possible that only a subset of execution paths E ⊆ Paths can be

explored within a given time budget. In such cases, we can quantify

L (tI ) as follows.

Lemma 3.3 (Anytime information leakage). Assume a com-

plete Cartesian partitioning (P1 ⊠ . . . ⊠ PK ) of I and a trace tI
that results in the observation constraint ΦO . If E ⊆ Paths, let

U
ΦO,E
Pi

⊆ Pi be the set of Pi elements for which the observation

constraint ΦO is impossible along the paths E. The following holds:

L (tI ) ≥
���
∨

e ∈E

pce
���sol −

∏

1≤i≤K

(

|Pi | − |U
ΦO,E
Pi

|

)

(9)

Proof. Observe that the set of all path conditions deines a

partition of the set of program inputs. Hence 2N coincides with

the sum of
���∨e ∈E pce ���sol and ���∨e ∈Paths\E pce ���sol . Similarly, we ob-

serve that
���∨e ∈Paths (Γ(pce ) ∧ ΦO,e

) ���sol coincides with the sum of���∨e ∈E (Γ(pce ) ∧ ΦO,e

) ���sol and ���∨e ∈Paths\E (Γ(pce ) ∧ ΦO,e

) ���sol .
Therefore, information leakage L (tI ) coincides with the following:

|
∨

e ∈E pce |sol+|
∨

e ∈Paths\E pce |sol−
���∨e ∈E (Γ(pce ) ∧ ΦO,e

) ���sol−
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���∨e ∈Paths\E (Γ(pce ) ∧ ΦO,e

) ���sol . Finally, the result follows from

| ∨e ∈Paths\E pce |sol ≥
���∨e ∈Paths\E (Γ(pce ) ∧ ΦO,e

) ���sol as well as,
∏

1≤i≤K

(

|Pi | − |U
ΦO,E
Pi

|

)

≥
���∨e ∈E (Γ(pce ) ∧ ΦO,e

) ���sol . □

For instance, using the segments deined before, U
ΦO,E
Pi

is the

number of values v in 0 ≤ v < 2N /K for which no Γ(pce ) ∧ΦO,e ∧

(ki = v ) is satisiable. Note the term |
∨

e ∈E pce |sol involves only

path conditions. |
∨

e ∈E pce |sol can often be computed via model

counting [2] in practice.

In the next section, we will describe the construction of Γ (pce )

for an arbitrary path condition pce .

4 GENERATING SYMBOLIC CACHE MODEL

The technical contribution of our methodology is to establish a

relation between a symbolic model for the cache and our leak-

age metric introduced in Section 3.2. In this section, we propose

and formulate a novel and eicient symbolic model to encode the

performance of direct-mapped caches. In direct-mapped caches, a

given memory address can be mapped to exactly one cache line

(as shown in Figure 2(d)). Of course, we evaluate CHALICE also for

set-associative caches [18]. The symbolic models of set-associative

caches are handled in a similar fashion as proposed in our previ-

ous work [17]. To describe our model, we shall use the following

notations throughout our discussions:

• 2S : The number of cache lines in the cache.

• 2B : The size of a cache line (in bytes).

• set (ri ) : Cache line accessed by instruction ri .

• taд(ri ) : The tag that would be stored in the cache for the

memory access by ri .

Intercepting Memory Requests. We symbolically execute a

program P . During symbolic execution, we track the path con-

dition and the sequence of memory accesses for each explored path.

For instance, while symbolically exercising the If branch of Fig-

ure 2(a), we track the path condition 0 ≤ k ≤ 127 and the sequence

of memory addresses ⟨&p[k],&q[255 − k],&p[k]⟩. It is worthwhile

to note that such memory addresses might capture symbolic ex-

pressions due to the dependency from program inputs. Concretely,

we compute the path condition pce and the execution trace Ψpce
for each explored path e as follows:

Ψpce ≡ ⟨(r1,σ1), (r2,σ2), . . . , (rn−1,σn−1), (rn ,σn )⟩ (10)

where ri captures the i-th memory-related instruction executed

along the path and σi symbolically captures the memory address

accessed by ri .

Modeling Symbolic Cache Access. Following the basic design

principle of caches, we compute set (ri ) and taд(ri ) bymanipulating

the symbolic expression σi . In particular, set (ri ) and taд(ri ) are

formulated as follows:

set (ri ) = (σi ≫ B) &
(

2S − 1
)

; taд(ri ) = (σi ≫ (B + S)) (11)

We note that both set (ri ) and taд(ri ) might be symbolic expressions

due to the presence of symbolic expression σi .

rkr1 rj rnri

Induced cache miss (causing eviction)

No reuse of  

memory block

Figure 4: rj induces a cache miss at ri if rj accesses the same cache set as ri and rk
does not load the block accessed by ri

Modeling Cache Misses. We characterize cache misses into the

following categories:

(1) Cold cache misses. Instruction ri sufers a cold miss if and

only if set (ri ) has not been accessed by any previous instruc-

tion r ∈ {r1, r2, . . . , ri−1}.

(2) Cache misses due to eviction. Instruction ri sufers a cache

miss due to eviction if and only if the last access to set (ri )

had been from an instruction r j ∈ {r1, r2, . . . , ri−1}, such

that taд(r j ) , taд(ri ).

Constraints to formulate cold cache misses. If a cache line

is accessed for the irst time, such an access will inevitably in-

cur a cache miss. Let us consider that we want to check whether

instruction ri accesses a cache line for the irst time during ex-

ecution. In other words, we can check none of the instruction

r ∈ {r1, r2, . . . , ri−1} touches the same cache line as ri . Therefore

ri sufers a cold miss if and only if the following condition holds:

Θcoldi ≡
∧

p∈[1,i )

(

set (rp ) , set (ri )
)

(12)

Constraints to formulate cache evictions. In the following,

we formulate a set of constraints to encode cache misses other than

cold cache misses. Such cache misses occur due to the eviction of

memory blocks from caches.

To illustrate diferent cache-miss scenarios clearly, let us con-

sider the example shown in Figure 4. Assume that we want to check

whether ri will sufer a cache miss due to eviction. This might

happen only due to instructions appearing before (in the program

order) ri . Consider one such instruction r j , for some j ∈ [1, i ). Infor-

mally, r j is responsible for a cache miss at ri , only if the following

conditions hold:

1)ψcnf (j, i ): ri and r j access the same cache line. Therefore, we

have the following:

ψcnf (j, i ) ≡
(

set (r j ) = set (ri )
)

(13)

2) ψdif (j, i ): ri , r j access diferent memory-block tags. This is

formalized as follows:

ψdif (j, i ) ≡
(

taд(r j ) , taд(ri )
)

(14)

3) ψeqv (j, i ): There does not exist any instruction rk where
k ∈ [j + 1, i ), such that rk accesses the same memory block as ri . It
is worthwhile to note that the existence of rk will load the memory
block accessed at ri . Since rk is executed after r j (in program or-
der), r j is not responsible for a cache miss at ri . We formulate the
following constraint to capture this condition:

ψeqv (j, i ) ≡
∧

k : j<k<i

(taд (rk ) , taд (ri ) ∨ set (rk ) , set (ri )) (15)

Constraints (13)-(15) capture necessary and suicient conditions

for instruction r j to replace the memory block accessed by ri (where

j < i) and the respective block not being accessed between r j and
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ri . In order to check whether ri sufers a cache miss due to eviction,

we need to check Constraints (13)-(15) for any r ∈ {r1, r2, . . . , ri−1}.

This can be captured via the following constraint:

Θ
emp
i ≡

*.
,
∨

j : 1≤j<i

(

ψcnf (j, i ) ∧ψdif (j, i ) ∧ψeqv (j, i )
)+/
- (16)

Instruction ri will not sufer a cache miss due to eviction when,

for all prior instructions, at least one of the Constraints (13)-(15)

does not hold. This scenario is the negation of Constraint (16) and

therefore, it is captured via ¬Θ
emp
i .

We use variablemissi to capture whether instruction ri sufers

a cache miss. As discussed in the preceding paragraphs, ri sufers

a cold miss (i.e. satisfying Constraint (12)) or the memory block

accessed by ri would be evicted due to instructions executed before

ri (i.e. satisfying Constraint (16)). Using this notion, we formulate

the value ofmissi as follows:

Θ
m,dir
i ≡

((

Θ
emp
i ∨ Θcoldi

)

⇒ (missi = 1)
)

(17)

Θ
h,dir
i ≡

((

¬Θ
emp
i ∧ ¬Θcoldi

)

⇒ (missi = 0)
)

(18)

Puting it all together. Recall that Γ(pce ) captures the con-

straint system to encode the cache behaviour for all inputs I |= pce .

In order to construct Γ(pce ), we gather constraints, as derived in the

preceding sections, and the path condition into Γ(pce ) as follows:

Γ(pce ) ≡ pce ∧
∧

i ∈[1,n]

(

Θ
m,dir
i ∧ Θ

h,dir
i

)

(19)

5 CHECKING INFORMATION LEAK

In this section, we instantiate CHALICE by formulating ΦO for two

diferent observer models. We assume that tI is the observed execu-

tion trace for input I andwewish to quantify howmuch information

about input I is leaked through tI .

Observation via total miss count. In this scenario, an attacker

can observe the number of cache misses of executions [12]. The

observer O : Σ∗ → N is a function, where a sequence of cache hits

and misses are mapped to a non-negative integer capturing the

number of cache misses. Therefore, for a given trace t ∈ Σ∗, O (t )

captures the number of cache misses in the trace t .

Recall that we use variable missi to capture whether the i-th

memory access was a cache miss. We check the unsatisiability of

the following logical formula to record information leak:

∨

e ∈Paths

*.
,Γ(pce ) ∧

*.
,
∑

i ∈[1,ne ]

missi = O (tI )
+/
- ∧ π

+/
- (20)

where ne is the number of memory accesses occurring along path e

and π is a predicate deined on program inputs. Concretely, if Con-

straint (20) is unsatisiable, we can establish that the information

ł¬π ≡ true" is leaked through the execution trace tI . By performing

such unsatisiability checks over the entire program input space,

we quantify the information leak L (tI ) through execution trace tI
(cf. Section 3.3).

Observation via hit/miss sequence. For an execution trace

t ∈ Σ∗, an observer can monitor hit/miss sequences from t [5].

Concretely, let us assume {o1,o2, . . . ,ok } is the set of positions in

trace t where the observation occurs. If n is the total number of

memory accesses in t , we have oi ∈ [1,n] for each i ∈ [1,k].

We deine the observer O : Σ∗ → {0, 1}k as a projection from the

execution trace onto a bitvector of size k . Such a projection satisies

the following conditions: O (t )i = 1 if toi = m and O (t )i = 0

otherwise. O (t )i captures the i-th bit of O (t ) and similarly, toi
captures the oi -th element in the execution trace t . Note that a

strong observer could map the entire execution trace to a bitvector

of size n.
For such an observer, we check the unsatisiability of the follow-

ing formula to record information leak:

∨

e∈Paths

*..
,
Γ (pce ) ∧

∧

i∈{1,2, . . .,k }

*..
,

oi ≤ ne
∧missoi = O (tI )i

+//
-
∧ π

+//
-

(21)

where π is a predicate on program inputs. By generating such

predicates over the input space, we quantify the information leaked

about input I via L (tI ) (cf. Section 3.3). In Constraint (21), our

general information leak checker in Constraint (8) is instantiated

with ΦO,e being set to
∧

i ∈{1,2, ...,k }
(

missoi = O (t )i
)

.

In general, CHALICE can be instantiated for any observer model

expressed via symbolic constraints overmissi .

6 EVALUATION

Experimental setup. We implemented CHALICE on top of the

KLEE symbolic virtual machine [3]. We have engineered KLEE to

symbolically execute the PISA [7] binary code ś a MIPS like archi-

tecture. This is because, cache performance is captured accurately

only in the executable binary code. To evaluate the efectiveness

of CHALICE, we have chosen cryptographic applications from the

OpenSSL library [1] and other software repositories [4], as well as

applications from the Linux GDK library (cf. Table 1). The choice

of our programs is motivated by the critical importance of vali-

dating security-related properties in these applications. We have

performed all experiments on an Intel I7 machine with 8GB of RAM

and running a Debian operating system.

Program Lines of Lines of Input size Max.
C code MIPS code #Memory

(disassembled access
version)

AES [4] 800 4842 16 bytes 2134

AES [1] 1428 1700 16 bytes 420

DES [1] 552 3480 8 bytes 334

RC4 [1] 160 660 8 bytes 1538

RC5 [1] 256 1740 16 bytes 410

keyval_to_unicode (GDK) 1300 248 4 bytes 114

keyval_name (GDK) 1350 1400 4 bytes 12

Table 1: Salient features of the evaluated subject programs

Generating Predicates on Inputs. Using CHALICE, we can se-

lect an arbitrary number of bits in the program input to be symbolic.

These symbolic bits capture the high sensitivity of the input sub-

space and our framework focuses to quantify the information leaked

about this subspace. For instance, in encryption routines, the bits

of private input (e.g. a secret key) can be made symbolic. Without

loss of generality, in the following, we assume that the entire input

is sensitive and we make all input bits to be symbolic.
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Let us assume an arbitrary N -byte program input k . We sample

k into K equal segments and use ki to capture the i-th segment.

We generate the following predicates on inputs for quantifying

information leak L (tI ) (cf. Section 3.3):

πbit = {ki = v | i ∈ [1,N ],v ∈ [0, 1]}

πbyte =

{

ki = v | i ∈ [1,
N

8
],v ∈ [0, 255]

}

It is worthwhile to mention that for a 16-byte sensitive input (e.g.

in AES-128), πbit and πbyte lead to 256 and 4096 calls to the solver,

respectively to quantify L (tI ).

Key Results. Table 2 outlines the key results obtained from

CHALICE. For all evaluations in Table 2, we used an 8 KB direct-

mapped cache with a line size of 32 bytes (refer to the extended

version [18] for detailed experiments with diferent cache conigu-

rations). For a randomly generated execution, Table 2 demonstrates

the quantiied information leak with respect to predicates πbit and

πbyte . We make the following observations from Table 2. For all

scenarios, L (tI ) is zero when predicates πbit is used. Therefore,

we can prove the absence of any dependency between the cache per-

formance (i.e. the number of cache miss or hit/miss sequence) and

the value of an arbitrary bit of the key, for all the observations in

Table 2. However, we observe the presence of substantial leak with

respect to πbyte , when the number of cache misses were observed.

For instance, we established that as many as 251 values (out of 256)

are leaked for each byte of the AES key (in the implementation [4]).

This means, there exist at least 25116 (≈ 2127) possible keys (out of a

total 2128) that can be eliminated just by observing the cache misses.

Such an information gives the designer valuable insights when

designing embedded systems, both in terms of choosing an AES

key and a cache architecture, in order to avoid serious security

breaches. In contrast to the implementation of [4], we can observe

from Table 2 that the implementation of AES from OpenSSL ex-

hibits substantially fewer information leaks. DES exhibits severe

cache side-channel leakage when the adversaries observe cache

misses, whereas RC4 exhibits lower leakage as compared to AES

and DES, with respect to the respective observation.

Observation via total Observation via hit/miss
Subject Program miss count of an arbitrary access

L (tI ) L (tI ) L (tI ) L (tI )
w.r.t. πbit w.r.t. πbyte w.r.t. πbit w.r.t. πbyte

AES [4] 0 ≈ 2127 0 ≈ 2127

AES [1] 0 ≈ 237 0 ≈ 28

DES [1] 0 ≈ 262 0 ≈ 242

RC4 [1] 0 ≈ 26 0 ≈ 28

RC5 [1] 0 0 0 0

GDK Library 0 ≈ 231 0 ≈ 231

Table 2: Leakage L (tI ) quantiied w.r.t. predicates πbit and

πbyte

We also investigated on adversaries who can observe the se-

quence of cache hits and misses, instead of just the overall number

of cache misses. To simplify our evaluation, we focused on se-

quences of length 1, and considered all the memory accesses. Our

goal is to check the dependency between the AES-key and the

hit/miss characteristics of an arbitrary memory access. Both AES

and DES exhibit substantial leakage with respect to this adversary.

RC4, in contrast, exhibits less leakage in the respective observation,

as shown in Table 2.

For RC5, CHALICE did not report any symbolic memory address

or symbolic branch conditions. Hence, the cache performance of

RC5 is unrelated to input and we leverage this report to verify

the absence of cache side-channel leak in RC5, with respect to the

observer models studied in CHALICE.

Experiments with set-associative caches. In this section, we

include the evaluation report for set-associative caches employ-

ing least-recently-used (LRU) replacement policy. Due to space

constraints, we only report the evaluation for AES implementa-

tions [1, 4] and for miss-count based observer model. A detailed

evaluation on all the subject programs can be found in an extended

version of this paper [18].

In Figures 5(a)-(b), we outline the number of values leaked per

byte of the sensitive input. Hence, the horizontal axis in these

igures capture the individual bytes of the sensitive input space. For

instance, consider the evaluation shown in Figure 5 for 2-way, 8KB

cache. In this scenario, the AES implementation [4] leaks 212 values

per byte of the secret key, for certain observations. This means, for

the respective set of observations, a potential attacker can eliminate

the possibility of at least 21216 possible keys. In other words, at

most 4416 keys are possible for the respective observation using a

2-way, 8 KB cache.

Increasing cache size (or associativity) may have two contrasting

efects as follows. For a given cache size, let us assume a subset of

the input space I=C ⊆ I<C ∪ I=C ∪ I>C (where I<C ∪ I=C ∪ I>C is

the entire input space) which leads to C cache misses. Increasing

cache size reduces cache conlict. Therefore, it is possible that some

input i ∈ I>C , which leads to more than C cache misses with a

smaller cache, produces C cache misses with the increased cache

size. This tends to increase the number of inputs leading toC cache

misses, thus reducing the amount of information leaked through

observing C misses. Secondly, some input i ∈ I=C may have less

than C cache misses with increased cache size. This may reduce

the number of inputs having C cache misses, thus increasing the

potential leakage through the observation of C cache misses. In

Figure 5(a), the reduction in cache side-channel leakage is visible

for cache sizes up to 16 KB, for certain AES implementation [4].

However, for a 4-way 32 KB cache, we observe the increase in

information leakage. This is because the number of possible keys,

leading to a given observation, is reduced considerably.

Analysis sensitivity w.r.t. observation. Since we quantify in-

formation leak from execution trace tI , the leakage L (tI ) depends

on the observed cache behaviour. For observer models that record

the hit/miss statistics of an arbitrary access, we compute L (tI ) for

an arbitrary memory access to be a cache miss or a cache hit. For

observer models based on total miss count, the computed leakage

L (tI ) depends on the observed miss count. Figure 6 captures the

information leakage with respect to observed miss count. Although

we observe that L (tI ) mostly decreases with increased miss count,

there is no direct correlation between the observed miss count and

the computed leakage. In Figure 6, the distribution of information

leakage is similar to the tail of the essentially gaussian distribution

captured in Figure 1.

Analysis Time. Table 3 outlines the analysis time for a direct-

mapped 8KB cache. In most cases, a single call to the solver, which
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Figure 6: Information leak in AES [4] w.r.t. observed miss

count (experiments with a 8-KB direct-mapped cache))

reports information leak via unsatisiability check (e.g. via check-

ing Constraint (8)), is eicient. Due to the repeated calls to solver,

checking the information leakage, for the entire input space, takes

signiicant time. However, since CHALICE incorporates an anytime

strategy, the bounds on the quantiication of L (tI ) are valid for any

explored subsets of the program paths and input space. Moreover,

the size of our symbolic encoding does not vary signiicantly with

respect to the cache size (see the extended version [18]). Finally, the

performance of CHALICE can be improved drastically if we assign

one or more independent threads to check information leaked about

each input byte. We plan to implement this in the future.

Discussion. In our evaluation, we observe that CHALICE gen-

erally reports higher information leakage when miss count was

observed, as compared to observing the cache behaviour of an

arbitrary access. This is expected, as cache behaviour of a mem-

ory access, in general, also afects the total miss count. However,

if cache behaviours of a pair of memory accesses are inversely

correlated (e.g. one being a cache hit and another being a cache

miss for any input), then such accesses do not afect the total miss

count. Yet, these accesses may leak information when their cache

behaviours were observed individually. In our experiments, such a

phenomenon was discovered for RC4.

For the sake of brevity, we have only presented the quantiication

of information leak discovered via CHALICE. Due to the symbolic

nature of our analysis, CHALICE not only quantiies information

leak, it also highlights which values might leak through a potential

cache attack. Furthermore, for each memory-related instruction,

CHALICE highlights the set of input values that may leak for a

given execution. In summary, the report generated by CHALICE

can be leveraged for debugging and ixing critical information leak

scenarios. Potential debugging strategies will be to restructure the

code, selectively bypassing the cache or using software-controlled

memory for certain memory accesses.

7 RELATED WORK

Approaches based on static analysis [8, 22, 27, 28] are incapable

to highlight critical scenarios when a particular observation leaks

substantially more information than the rest [13]. CHALICE quanti-

ies information leak from execution traces and it does not sufer

from the aforementioned limitation. Moreover, CHALICE targets

arbitrary software binaries and it is not limited to the veriication of

constant-time cryptographic software [6, 10]. Existing work based

on symbolic execution [29] quantiies side-channel leakage via

counting the number of observations [22, 28], and it ignores the

efect of micro-architectural entities, such as caches.

CHALICE is complimentary to our recently proposed approach

CATAPULT [17], which obtains a coverage of all possible cache be-

haviour via symbolic execution. In contrast to CATAPULT, our goal is

to quantify the leakage of information for a given cache behaviour

and we instantiate our framework via a novel and eicient symbolic

model of direct-mapped caches.

The observer models used in this paper are based on existing

cache attacks [5, 12]. However, we believe that CHALICE is generic

to incorporate more advanced attack scenarios [15, 25, 26], as long

as the attacks are expressed via the intuition given in Section 5.

CHALICE is orthogonal to approaches proposing countermeasures
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Subject program Observation via total miss count Observation via hit/miss of an arbitrary access
Constraint size Peak mem. T1 Tbyte Tall Constraint size Peak mem. T1 Tbyte Tall

AES [4] 144072 261M ≈ 20 sec 1 hour 16 hours 1580 105M < 1 sec ≈ 1 min 16 min

AES [1] 21444 129M ≈ 18 sec 77 min 20 hours 265 90M < 1 sec ≈ 2 min 45 min

DES [1] 53808 127M ≈ 10 sec 50 min 8 hours 1809 35M < 1 sec ≈ 1 min 12 min

RC4 [1] 38622 1.1G ≈ 4 sec 15 min 4 hours 490 32M < 1 sec ≈ 1 min 16 min

RC5 [1] 0 28.3M ≈ 15 sec ≈ 15 sec ≈ 15 sec 0 29.2M ≈ 14 sec ≈ 14 sec ≈ 14 sec

GDK 21 102M < 1 sec < 1 sec ≈ 2 min 21 100M < 1 sec < 1 sec ≈ 1 min

Table 3: T1 captures average time taken for one solver call, Tbyte captures the average time taken to check information leak

for one input byte and Tall captures the time taken to check information leak via all predicates in πbyte

to thwart side-channel attacks [20, 31]. Of course, CHALICE can be

used to validate countermeasures mitigating cache side channels.

In summary, we propose a new approach to quantify cache side-

channel leakage from execution traces and demonstrate that such

an approach clearly has beneits over approaches based on static

or logical analysis. This is because CHALICE can highlight criti-

cal information leak scenarios that are impossible to discover by

competitive static or logical analysis.

8 CONCLUDING REMARKS

Threats to validity. In CHALICE, we assume an attacker model

where the cache architecture (i.e. the number of cache sets, line size,

associativity and replacement policy) is known to the adversary. We

also assume that the adversary can clearly distinguish the execution

proile of victim software. In practice, however, an adversary may

not accurately know the cache architecture or the execution proile

of the victim software. Hence, she may not be able to retrieve

as much information as computed via CHALICE. Since CHALICE

is aimed for security testing, we believe that threats involving

a strong attacker model is justiied. CHALICE currently does not

handle concurrent adversaries that aim to retrieve information by

investigating cache states [26]. However, our powerful symbolic

reasoning framework allows us to consider such adversaries in a

future extension of CHALICE.

Perspective. In this paper, we have shown that the mechanism

of CHALICE is highly desirable for quantifying the amount of in-

formation that can leak through memory performance. Besides

security testing, CHALICE can be used to discover bugs while writ-

ing constant-time cryptographic applications. We demonstrate the

usage of CHALICE to highlight critical information leak scenarios

in OpenSSL and Linux GDK libraries, among others.

CHALICE provides a platform to lift the state-of-the-art in security

testing via detecting and quantifying side-channel vulnerabilities.

We envision to extend CHALICE for side channels beyond caches and

use it to detect the potential of advanced side-channel attacks not

investigated in this paper. We hope that the core idea of CHALICE

would also inluence the activities in testing software regressions.
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