
Foundations and Trends R© in Electronic Design Automation

Vol. 8, No. 4-3 (2014) 199–356

c© 2014 S. Chattopadhyay, A. Roychoudhury, J. Rosén, P.

Eles, Z. Peng

DOI: 10.1561/1000000037

Time-Predictable Embedded Software on

Multi-Core Platforms:

Analysis and Optimization

Sudipta Chattopadhyay

Linköping University

sudipta.chattopadhyay@liu.se

Abhik Roychoudhury

National University of Singapore

abhik@comp.nus.edu.sg

Jakob Rosén

Linköping University

jakob.rosen@gmail.com

Petru Eles

Linköping University

petru.eles@liu.se

Zebo Peng

Linköping University

zebo.peng@liu.se

Contents

Abstract 199

1 Introduction 200

2 WCET analysis and multi-core platforms 204

2.1 A background on WCET analysis 204

2.2 Challenges in WCET analysis for multi-core architectures214

3 WCET analysis for multi-core platforms 217

3.1 Modeling shared caches 218

3.2 Modeling shared buses 236

3.3 Modeling timing interactions 259

3.4 Discussion about analysis complexity 284

3.5 Experimental evaluation 287

3.6 Data caches and branch target buffers 301

3.7 A survey of related techniques 303

4 WCET optimization for multi-core platforms 305

4.1 Optimization of worst-case response time 305

4.2 WCRT optimization approach 306

4.3 Cost function . 308

4.4 Optimization algorithm 310

ii

iii

4.5 Simplified algorithm . 319

4.6 Memory consumption 320

4.7 Experimental results . 321

4.8 A survey of related techniques 327

5 Time-predictable multi-core architecture 330

5.1 Resource isolation . 330

5.2 Usage of software controlled memory 333

5.3 Extension of instruction set architecture (ISA) 336

6 Discussion and future work 338

6.1 Summary of recent development 338

6.2 Limitations imposed by current approaches 339

6.3 Other limitations . 340

6.4 Analysis pessimism . 341

6.5 Research challenges in future 342

7 Conclusions 346

Acknowledgements 347

References 348

Abstract

Multi-core architectures have recently gained popularity due to their high-

performance and low-power characteristics. Most of the modern desktop sys-

tems are now equipped with multi-core processors. Despite the wide-spread

adaptation of multi-core processors in desktop systems, using such proces-

sors in embedded systems still poses several challenges. Embedded systems

are often constrained by several extra-functional aspects, such as time. There-

fore, providing guarantees for time-predictable execution is one of the key re-

quirements for embedded system designers. Multi-core processors adversely

affect the time-predictability due to the presence of shared resources, such as

shared caches and shared buses. In this contribution, we shall first discuss the

challenges imposed by multi-core architectures in designing time-predictable

embedded systems. Subsequently, we shall describe, in details, a comprehen-

sive solution to guarantee time-predictable execution on multi-core platforms.

Besides, we shall also perform a discussion of different techniques to provide

an overview of the state-of-the-art solutions in this topic. Through this work,

we aim to provide a solid background on recent trends of research towards

achieving time-predictability on multi-cores. Besides, we also highlight the

limitations of the state-of-the-art and discuss future research opportunities

and challenges to accomplish time-predictable execution on multi-core plat-

forms.

S. Chattopadhyay, A. Roychoudhury, J. Rosén, P. Eles, Z. Peng. Time-Predictable Embedded

Software on Multi-Core Platforms:

Analysis and Optimization. Foundations and Trends R© in Electronic Design Automation,

vol. 8, no. 4-3, pp. 199–356, 2014.

DOI: 10.1561/1000000037.

1

Introduction

Real-time, embedded systems often need to satisfy several extra-functional

constraints, such as timing. In particular, for hard real-time systems, such

timing constraints are strictly enforced. Violation of these timing constraints

may have serious consequences, potentially costing human lives. Therefore,

static timing-analysis of hard real-time systems has emerged to be a critical

problem to solve.

In general, a real-time, embedded application is made of several compo-

nents, usually called tasks. Therefore, timing analysis of embedded software

is typically performed in two separate phases: (i) a low-level analysis which

derives the worst case execution time (WCET) and best case execution time

(BCET) of individual tasks, and (ii) a system-level schedulability analysis

which uses the WCET/BCET derived for each task and computes the overall

timing characteristics of the application. In this monograph, we shall primar-

ily focus our discussion on low-level WCET analysis.

WCET analysis of an embedded software is typically performed in three

stages: (i) a flow-analysis using the control flow graph (CFG) of the pro-

gram (to determine infeasible paths and loop bounds), (ii) micro-architectural

modeling (to determine the worst case execution time of each basic block

in the CFG) and (iii) a calculation phase which combines the outcome of

200

201

flow-analysis and micro-architectural modeling to derive the worst case ex-

ecution time (WCET) of the entire program. Micro-architectural modeling

systematically considers the timing effects of underlying processor features,

such as pipeline, caches, branch prediction and so on. For single-core pro-

cessors, such a micro-architectural modeling involves the analysis of a single

program occupying the processor. However, this criterion no longer holds

with multi-core processors. Since their inception, multi-core processors have

widely been adopted due to their high-performance and low-power character-

istics. Unfortunately, multi-core processors pose some significant challenges

in terms of time-predictability. Basically, these challenges arise due to the

presence of shared resources, such as shared caches and shared buses [5].

The presence of shared resources makes the WCET analysis significantly

more complex than the WCET analysis on single-core processors. In particu-

lar, micro-architectural modeling is affected due to the presence of inter-core

interferences, such as shared cache conflicts or bus contention. Through this

monograph, we primarily aim to highlight the recent advances to address such

challenges.

As mentioned in the preceding paragraph, shared resources are the key

bottlenecks to build time-predictable embedded software on multi-core plat-

forms. The content of a shared cache is modified by several programs running

in parallel on different cores. Therefore, the modeling of inter-core cache con-

flicts is important to estimate the shared-cache latency accurately. For bus-

based systems, shared buses introduce variable access latency to the shared

resources (e.g. shared caches and main memory). Such a variable access la-

tency highly depends on the bus contention, which in turn depends on the

amount of memory traffic generated by different cores. In this monograph,

we shall first describe an approach to model the timing behavior of shared

caches [21]. Such a modeling systematically combines abstract interpreta-

tion with state-of-the-art program-verification techniques (e.g. model check-

ing and symbolic execution). In particular, such an approach leverages both

the scalability offered by abstract interpretation and the accuracy offered by

program-verification methods to build a tight modeling of shared caches. We

then describe works on analyzing timing behavior for static bus-arbitration

policies, such as time division multiple access (TDMA). Even with static bus-

arbitration policies, an accurate analysis of shared-bus delay is complex. This

202 Introduction

is due to the reason that bus delay highly depends on the context, such as

individual loop iterations and procedure calls. In the worst-case, each loop

iteration may experience different bus delay. We describe works [69, 9, 22]

in this direction whose requirements range from full-fledged loop unrolling

to avoiding loop unrolling altogether, depending on the analysis accuracy.

Subsequently, we discuss the development of a full-fledged WCET anal-

ysis framework by combining the modeling of shared resources [18]. Such a

combination is non-trivial due to the possible presence of timing anomalies

[59]. In the presence of timing anomalies, a local worst-case (e.g. a cache miss

or maximum bus delay) may not lead to the overall WCET of a program. As a

result, it is unsound to model the timing behavior of each micro-architectural

component and get the overall timing behavior by a simple composition of in-

dividual timing models. This framework systematically models the timing in-

teraction of shared resources with the rest of the micro-architectural features

(e.g. pipeline, branch prediction) and it does not assume a timing-anomaly-

free architecture. The WCET analysis framework is built on top of Chronos

[52], a freely-available, open-source WCET analysis tool. We show the eval-

uation of this analysis framework via several experiments.

Besides modeling individual micro-architectural features in multi-core

processors, predictability of embedded software can also benefit from cus-

tomized compiler optimizations and time-predictable multi-core hardware.

In this direction, we discuss an optimization of bus schedules to improve

time-predictability. Specifically, we describe the generation of customized

bus schedules that may greatly improve the WCET of a program [69]. Fi-

nally, we discuss several designs of time-predictable hardware to reduce the

pessimism in the WCET analysis on multi-core platforms.

The main purpose of this monograph is to give the readers a thorough

background on time-predictability for multi-core platforms. Therefore, we

have also performed a discussion of research activities by several research

groups in this area. This discussion provides a comprehensive overview of

the state-of-the-art solutions in the respective topic. In particular, our dis-

cussion reveals that the area is fast evolving and there is an active interest

by real-time research groups on the topic discussed in this monograph. Fi-

nally, in the concluding section of this monograph, we have highlighted a

set of open challenges in achieving high-performance and time-predictable

203

embedded software on multi-core platforms. We hope that this monograph

will provide a foundation of building time-predictable software on multi-core

platforms and it will help the research community to address the existing

challenges in this area.

2

WCET analysis and challenges with multi-core

architecture

In this section, we shall first give the readers a general background on WCET

analysis. Subsequently, we shall discuss the specific challenges that appear in

the context of multi-core processors.

2.1 A background on WCET analysis

WCET analysis aims to obtain an upper bound on the execution time of a

program. Execution time of a program critically depends on the provided in-

put. Since the set of all possible inputs is often unbounded, it is, in general,

impossible to explore the entire input space. For instance, the execution time

of a video player cannot be analyzed by considering all possible videos. Be-

sides, it is essential to have a clear domain knowledge about the software

to understand its input space. On the other hand, static WCET analysis [83]

is a powerful mechanism which analyzes a program irrespective of its input

and provides an upper bound on the program’s execution time. Such a static

WCET analysis works on an abstract representation of the program, usually,

the control flow graph (CFG). As a result, a sound upper bound on the exe-

cution time of a program can only be obtained via static WCET analysis. We

shall now discuss the different stages of a static WCET analysis framework.

204

2.1. A background on WCET analysis 205

Processor

configuration

Micro−architectural

modeling

Program CFG

Program flow Flow information

loop bound etc)

calculation

WCET

analysis

of basic blocks

WCET

constraints

Additional user

WCET

(infeasible paths,

Figure 2.1: Overview of a typical WCET analysis framework

As mentioned in the preceding paragraph, static WCET analysis typically

works on the control flow graph (CFG) of a program. Such a static WCET

estimation involves three phases: program flow analysis (to find infeasible

program paths and loop bounds), micro-architectural modeling (to determine

the timing effects of underlying hardware) and a calculation phase to find the

longest feasible program path using the results of program flow analysis and

micro-architectural modeling.

Figure 2.1 captures an overview of a typical WCET analysis process.

Micro-architectural modeling usually works at the level of basic blocks in

the program CFG and it computes the WCET of each basic block. Program

flow information can be derived by static analysis and some additional flow

information can also be given by the user manually. WCET of each basic

block and program flow information (loop bound, infeasible paths) are used

to compute the WCET of the entire program, as shown in Figure 2.1.

Now we shall explain each of the three stages of WCET analysis.

2.1.1 Program flow analysis

The goal of program flow analysis is to find infeasible program paths and

loop bounds. The soundness of WCET analysis is not affected by infeasible

program paths. However, with the knowledge of infeasible paths, the static

WCET analyzer can ignore certain paths during WCET computation. This in

turn may lead to a more precise WCET estimation. Consider an example pro-

gram and its corresponding control flow graph (CFG) shown in Figure 2.2.

206 WCET analysis and multi-core platforms

x = a[i] * 5

sum += x sum += x

sum += x sum += x

i = i + 2

i < 100

z == 0

i = 0

exit

x = a[i] + 1x = a[i] * 7

x = a[i] + 5

B2

B3 B4

B5

B6 B7

B8

S

R

z < − 2

void f (int z) {

while (i < 100) {

if (z == 0) {

x = a[i] * 5;

sum += x;

} else {

x = a[i] + 5;

sum += x;
}

if (z < −2) {

x = a[i] * 7;

sum += x;

} else {

x = a[i] + 1;

sum += x;
}

i = i + 2;
}

}

int i = 0, sum, x, a[100]; Y N

Y

Y N

N

Figure 2.2: An example program and its corresponding control flow graph (CFG)

Without any knowledge of infeasible paths, assume that the WCET analyzer

computes B2-B3-B5-B6-B8 as the worst-case execution path inside the

loop. However, careful examination reveals that the condition of basic block

B2 (i.e. z == 0) and basic block B5 (i.e. z < −2) cannot be satisfied together

for any execution. Therefore, B2-B3-B5-B6-B8 captures an infeasible exe-

cution and therefore, it can be ignored during the WCET analysis. In general,

if such infeasible path information can be integrated into a WCET analyzer,

the analysis may lead to a more precise WCET estimate by focusing on a

reduced number of possible execution paths.

Whereas the discovery of infeasible paths may only affect the precision of

WCET analysis, WCET prediction is not possible without knowing the upper

bound of all loop iterations in the program. In the example shown in Figure

2.2, it is not possible to predict the WCET of function f without knowing

that the loop iterates 50 times. Therefore, discovering the upper bound on

loop iteration is potentially more critical for estimating the WCET.

2.1. A background on WCET analysis 207

The research on flow analysis has focused on automatic discovery of in-

feasible paths, as well as loop bounds [78, 38, 42, 58]. Note that the discov-

ery of loop bounds is an undecidable problem. Therefore, if the upper bound

on loop iteration cannot be inferred statically, such an upper bound can be

provided manually to the WCET analyzer in the form of user annotations.

Similarly, certain infeasible program paths might be provided manually to

the WCET analysis framework to get a more precise WCET estimation.

2.1.2 Micro-architectural modeling

The WCET of an application is highly sensitive to the underlying hardware

platform. Therefore, to predict a sound and precise WCET of an application,

the timing effects of the underlying hardware need to be modeled. Micro-

architectural modeling analyzes the timing effects of underlying hardware

components (e.g. pipeline, cache, branch predictor etc) and it is the crucial

part of a WCET analysis process. To better understand the importance of

micro-architectural modeling in WCET analysis, let us consider the exam-

ple shown in Figure 2.3. Through the example in Figure 2.3, we shall show

why the timing effects of the underlying micro-architecture cannot be ig-

nored for a sound WCET analysis. Figure 2.3(a) shows the CFG of a pro-

add a4, b4, 2

add a3, b3, 1

add a2,b2,c2
mult x2,y2,z2

mult x3,y3,z3

L1: Return

B2

Jump L1

B3

B4

L2: add a1,b1,c1

B1Jump conditional L2

B1

B2

B3

B4

cache block

cache block

One

One

cache miss

cache miss

cache miss

(a) (b)

Figure 2.3: (a) A program CFG with two paths, (b) memory layout of the program code

gram fragment. The program fragment has exactly two paths: i) B1-B2-B4

and ii) B1-B3-B4. Basic block B2 has a set of multiplication (mult) in-

208 WCET analysis and multi-core platforms

structions and basic block B3 has a set of addition instructions (add). Since

multiplication is much more expensive than addition, without considering any

micro-architectural effects, we might conclude that B1-B2-B4 is the worst

case execution path. Now consider the presence of an instruction cache and

assume that the example program fragment has been loaded in memory as

shown in Figure 2.3(b). If a cache block can hold four instructions, basic

block B2 will not suffer any cache miss. However, basic block B3 will suffer

a cache miss to load the first instruction in B3. As a result, the execution path

B1-B2-B4 will suffer two cache misses (one each at the beginning of basic

block B1 and basic block B4), whereas, the execution path B1-B3-B4 will

suffer three cache misses (one each at the beginning of each basic block).

Since the cache miss penalty is a magnitude higher than the processor clock

cycle, B1-B3-B4 might become the worst case execution path. Therefore,

we conclude that the timing effects of the underlying hardware platform are

of prime importance for a sound WCET estimate.

In the past two decades, an extensive amount of research effort has been

put forward for micro-architectural modeling. One of the first few approaches

includes the use of integer linear programming (ILP) [55], but the use of

ILP poses scalability issues due to the presence of a huge number of ILP

constraints. Subsequently, the work in [80] proposes a scalable approach of

using abstract interpretation for micro-architectural modeling. Since its in-

ception [29], abstract interpretation has been successfully applied to handle

several challenges, including functionality testing and compiler optimization.

In [80], abstract interpretation was proposed to be used for WCET analysis.

The basic framework proposed in [80] has later been extended by many re-

search efforts to analyze advanced micro-architectural features, such as data

caches [45], multi-level caches [40], pipeline [51] and branch predictor [28].

Compositional vs non-compositional architecture

In the context of WCET analysis, we distinguish between two architectures:

(i) compositional architectures, and (ii) non-compositional architectures [84].

For compositional architectures, we can build timing models of each micro-

architectural components (e.g. pipeline, caches, branch predictors) in isola-

tion and obtain the timing model of the overall architecture by a simple com-

position (e.g. adding the worst-case delays suffered in each component). Be-

2.1. A background on WCET analysis 209

sides, we can be sure that a local worst-case scenario always contributes to

the worst-case globally. For instance, a cache miss (instead of a cache hit)

can always be considered during micro-architectural modeling to compute

the global WCET. In a similar fashion, if a basic block in the CFG has differ-

ent starting time, the worst case starting time can always be taken into account

(during the WCET calculation phase as shown in Figure 2.1) to compute the

overall WCET of the program.

However, modern embedded processors may exhibit complex timing in-

teractions between different micro-architectural components (e.g. between

pipeline and caches). In general, for such architectures, it is not sufficient

to consider each micro-architectural components in isolation. We call such

architectures non-compositional, in the context of WCET analysis.

Non-compositional architectures exhibit timing anomalies [59], which

makes the micro-architectural modeling substantially more complex than

compositional architectures. Timing anomaly is defined as follows: assume a

sequence of instructions containing a particular instruction I . Further assume

that instruction I has two possible latencies L1 and L2, which lead to a total

execution time of E1 and E2, respectively, for the sequence of instructions.

Note that I might have variable latencies due to different reasons, such as,

cache hit/miss, variable execution cycle (e.g. multiplication instruction) and

so on. Timing anomalies occur when L1 < L2, but E1 > E2. The following

example illustrates timing anomalies for a non-compositional architecture.

Figure 2.4(a) shows a sequence of multiplication instructions and its ex-

ecution in a multiple-way, superscalar processor. The fourth instruction has

a dependency on the third instruction due to the computation in register r8.

Additionally, for the sake of illustration, we assume the following:

• Multiplication has variable execution latency of 1 ∼ 4 cycles. The first

three multiplication instructions take 4 cycles to execute and the fourth

instruction takes 3 cycles to execute.

• Cache miss penalty is 6 cycles.

• There are a total of two multiplier units.

We shall consider two execution scenarios: (EX1) the first instruction is an

instruction cache hit, and (EX2) the first instruction is an instruction cache

miss.

210 WCET analysis and multi-core platforms

IF ID EX WB CM

CMWBEXIDIF

IF ID EX WB CM

CMWBEXIDIF

WAIT

WAIT

Time 1 2 6 7 8 10 11 161412

mult r1, r2, r3

mult r4, r5, r6

mult r8, r7, r9

mult r0, r8, 5

true dependency

I2:

I3:

I4:

I1:

(a)

CMWBEXIDIF

IF ID

IDIF

Time 1 2 6 7 11 12

IF ID

EX WB CM

EX WB CM

EX WB CM

13

WAIT

cache miss

(b)

Figure 2.4: An example showing timing anomalies. (a) Execution scenario with I1 facing

instruction cache hit, (b) execution scenario with I1 facing instruction cache miss

In EX1 (shown in Figure 2.4(a)), instruction I3 has to wait until the 6th

cycle as the two multiplier units are occupied by I1 and I2. Since I4 depends

on the result computed by I3, I4 also has to wait for I3 to finish execution.

Eventually, the sequence of instructions I1, I2, I3, I4 finishes in 16 cycles.

Now consider the second execution scenario where I1 is an instruction

cache miss (shown in Figure 2.4(b)). In this case, I3 can finish execution

at the 7th cycle using one of the free multiplier units. Subsequently, I4 can

finish execution at 11th cycle and the sequence of instructions finishes in 13

cycles.

From the above example, we observe that a cache hit (which is a local

worst case scenario) leads to an overall worse execution time compared to

a cache miss. Such a counter intuitive phenomenon appears due to the com-

plex timing interactions between cache and pipeline. The example in Figure

2.4 also demonstrates that it is insufficient to track the local worst case of

each instruction (such as a cache miss rather than a cache hit) to compute

2.1. A background on WCET analysis 211

the WCET of an entire program. As a result, to compute the WCET of a

program, one needs to keep track of all possible micro-architectural states.

Unfortunately, capturing all possible micro-architectural states is, in general,

infeasible. Therefore, existing works use abstract micro-architectural states

via abstract interpretation [80, 51] or timing interval abstraction to capture

the time taken by each pipeline stage [54, 53].

In section 3 of this monograph, we discuss WCET analysis methodolo-

gies for compositional, as well as non-compositional architectures.

2.1.3 Path analysis

Path analysis uses the results by program flow analysis and micro-

architectural modeling to find the longest feasible program path in the pro-

gram. Among others, path-based techniques and implicit path enumeration

are mostly used for the calculation of WCET.

Path-based techniques try to find the WCET of the program by enumerat-

ing feasible program paths and then searching for the program path having the

longest execution time. Path-based techniques are naturally very precise and

these techniques can also integrate various program flow information (com-

puted during flow analysis) while searching for the longest path. Path-based

WCET calculation has been used in [43]. However, path-based techniques

suffer from scalability problems, as they enumerate a huge number of paths.

The work of [76] somewhat addresses this issue by systematically removing

the infeasible paths from the control flow graph.

Implicit path enumeration techniques represent program control flow as

linear equations/constraints and formulate the WCET computation problem

as maximizing the objective function of an integer linear program (ILP). The

solution of the ILP can be derived by any ILP solver (e.g. CPLEX [46]). The

solution of the ILP contains a quantitative value capturing the WCET of the

program and the execution count of different control flow edges. However,

the solution of the ILP does not return the exact execution path which leads

to the worst-case scenario. The work of [80] first comprehensively combined

the abstract interpretation based micro-architectural modeling and the ILP-

based path analysis for WCET computation. Moreover, most of the common

forms of program flow information (such as infeasible paths, loop bound)

can easily be encoded as linear constraints and they can be integrated into the

212 WCET analysis and multi-core platforms

WCET formulation (as shown in [38, 47]). Consequently, ILP-based WCET

computation has become popular in the research community. Many WCET

analyzers currently employ an ILP-based (such as Chronos [52], aiT [1]) cal-

culation phase.

2.1.4 WCET calculation via ILP: an illustrative example

In this section, we shall illustrate the WCET computation by revisiting the

example shown in Figure 2.2. We shall use the implicit path enumeration

based WCET calculation for the illustration.

WCET analysis is usually carried out on the executable code to take into

account all the compiler optimizations. But for the sake of simplicity, in this

discussion, we shall show the process at the source code level. Figure 2.5

revisits the CFG of the example program in Figure 2.2 and it also shows the

ILP constraints.

Let us assume that CB denotes the WCET of basic block B derived via

micro-architectural modeling. Note that, for a non-compositional architecture

(e.g. an architecture that exhibits timing anomalies), WCET computation of

each basic block B takes into account all possible execution contexts of B.

Further assume EB1B2 is the ILP variable which denotes number of times

the edge from basic block B1 to basic block B2 is taken in the execution.

Therefore, we have the following objective function in the ILP formulation:

Maximize CS + CB2ESB2 + CB2EB8B2 + CB3EB2B3

+CB4EB2B4 + CB5EB3B5 + CB5EB4B5 + CB6EB5B6

+CB7EB5B7 + CB8EB6B8 + CB8EB7B8

(2.1)

Representing control flow and loop bound: Only one execution

path is taken at a branch. Therefore, we have a set of control flow constraints

as shown in Figure 2.5(c). The program in this example contains a loop and

for WCET computation, the loop bound must be known. For the example

program, the upper bound on the loop iteration is 50. This loop bound can

2.1. A background on WCET analysis 213

x = a[i] * 5

sum += x sum += x

sum += x sum += x

i = i + 2

i < 100

z == 0

i = 0

exit

x = a[i] + 1x = a[i] * 7

x = a[i] + 5

B2

B3 B4

B5

B6 B7

B8

S

R

z < − 2

Y N

Y

Y N

N

Control flow constraints

Infeasible path constraints

Loop bound constraints

ILP objective function

ESB2 +EB2B8 = EB2B3 +EB2B4

EB2B3 = EB3B5

EB2B4 = EB4B5

EB3B5 + EB4B5 = EB5B6 + EB5B7

EB5B6 = EB6B8

EB5B7 = EB7B8

EB6B8 + EB7B8 = EB8R + EB8B2

EB8R = 1

EB8B2 ≤ 50

CS +CB2ESB2 +CB2EB8B2 +CB3EB2B3

+CB4EB2B4 +CB5EB3B5 +CB5EB4B5

Maximize

+CB8EB7B8

+CB6EB5B6 +CB7EB5B7 +CB8EB6B8

EB2B3 + EB5B6 ≤ 50

(a) (b)

Figure 2.5: An example showing ILP-based WCET calculation (a) program control flow

graph, (b) ILP formulation

be explicitly specified by the user or it can also be derived through a com-

plex analysis of the program. For instance, the work proposed in [58] uses a

novel combination of abstract interpretation and program slicing to precisely

compute loop bounds of a program.

Representing infeasible paths: Certain infeasible path informations

can be represented as linear constraints and therefore, they can easily be in-

tegrated into the ILP-based calculation. Note that basic blocks B3 and B5

cannot both be present in any feasible execution. This is due to the infeasible

condition z == 0 ∧ z < −2. Such infeasible paths can be represented as

linear constraints as shown in Figure 2.5(c).

An ILP solver (e.g. CPLEX) maximizes the objective function (as speci-

fied in Equation 2.1) considering all specified constraints to it (Figure 2.5(c)).

214 WCET analysis and multi-core platforms

2.2 Challenges in WCET analysis for multi-core architec-
tures

There exists a vast variety of multi-core processors in the market. However,

instead of going into the specific hardware implementation of a multi-core

processor, we shall mainly concentrate on an abstract architecture that is com-

mon for most multi-core platforms. Figure 2.6 shows one such architecture.

Each core has a private L1 cache. Therefore, L1 cache contents are not af-

fected by inter-core interferences. This L1 cache might be a split-cache (i.e.

instruction and data memory do not share space in L1 cache) or a unified

cache. Besides, all the cores share an L2 cache, which acts as a back-up mem-

ory for L1 caches. If a memory access misses in both the L1 and L2 cache, the

respective memory block has to be fetched from the main memory (usually a

DRAM). This off-chip memory is several magnitudes slower than the caches.

We assume a bus-based system. Therefore, all traffic to the shared cache and

off-chip memory has to access the shared bus, which in turn is controlled by

a bus arbiter.

It is worthwhile to note that the shared bus, in commercial processors,

is usually located between the L2 cache and main memory. In Figure 2.6,

the shared bus primarily captures a medium to access shared caches or main

memory. In the context of WCET analysis, our intention is to convey the

information that this shared medium may introduce additional delay to access

shared caches or main memory. In general, this shared medium might be

implemented using a very complex protocol. However, our only intention is

to portray the fact that such a shared medium should exist. For shared caches,

such a shared medium is needed when several threads want to access the

same L2 cache bank. In commercial processors, the cache controller usually

serializes such requests. In Figure 2.6, for simplicity, it is assumed that the

shared bus serializes such accesses to the shared cache as well. In the context

of hard real-time processing, such an architecture has also been implemented

[3] and it follows time-division-multiple-access (TDMA) arbitration scheme

to serialize shared cache access requests.

We argue that WCET analysis in the presence of multi-core platforms

is substantially more complex than WCET analysis for single-core architec-

tures. The key to such complexity arises due to resource sharing. Analyz-

ing the WCET on a single-core processor we can exclusively concentrate

2.2. Challenges in WCET analysis for multi-core architectures 215

Core 1

L1 cache

Core n

L1 cache

Shared L2 cache

Main memory

Shared bus

L1 cache

Core 2

.............

Figure 2.6: A typical multi-core architecture with resource sharing (i.e. shared cache and

shared bus)

on the program under analysis. Unfortunately, this simple property does not

hold when analyzing WCET for multi-core platforms. The content of shared

caches (cf. Figure 2.6) might be modified by different programs running on

multiple cores. As a result, to analyze the WCET on multi-core platforms, we

must know the amount of interferences generated on shared caches. However,

inter-core interference on shared caches highly depends on the interleaving

patterns of programs that are running on multiple cores. To illustrate the prob-

lem more deeply, let us first go through a simple example. Assume that two

programs T and T ′ are running on two different cores. Program T accesses

memory blocks m twice in sequence, while program T ′ accesses memory

blocks m′ twice in sequence. Finally, assume that m and m′map to the same

shared cache set. If the shared cache is direct-mapped and all accesses miss

the L1 cache, an interleaving access pattern m → m → m′ → m′ will intro-

duce two shared cache misses. On the contrary, an interleaving access pattern

m → m′ → m → m′ will lead to four shared cache misses.

However, it is impossible to enumerate all interleaving access patterns

due to the huge exponential complexity. Therefore, an exhaustive solution

216 WCET analysis and multi-core platforms

is impossible in practice. To avoid this exponential complexity, a suitable

abstraction is required. The primary purpose of such an abstraction will be to

estimate the amount of inter-core interferences on shared caches in a sound

manner and still avoid the exhaustive enumeration of access patterns.

Analysis of shared buses also faces complication due to the reason men-

tioned in the preceding paragraph. Since several cores may access the bus at

the same time, a bus access might be delayed. This delay captures the time

between a bus access request is made and the time when the bus access is

granted. This waiting period for bus access highly depends on the bus ar-

bitration policy and memory traffic generated by different cores. However,

the time-predictability can be substantially improved if the arbitration pol-

icy is software controlled and it is available at compile time. Time-division-

multiple-access (TDMA) is one such arbitration policy, where dedicated bus

slots are available to each core for communication. Even in the presence of

software-controlled arbitration policies, an accurate analysis of shared buses

is complicated. This is due to the presence of variable bus delay. The same

memory reference (i.e. a memory access instruction in a program) may ex-

perience highly different bus delay in different contexts, such as in different

calling contexts and in different loop iterations. In an extreme case, each loop

iteration may suffer different bus delays. Such a phenomenon makes WCET

analysis extremely complicated due to a substantial increase in the number

of micro-architectural contexts to consider. Of course, it is possible to con-

sider the worst-case bus delay for each micro-architectural context and derive

a safe upper bound on WCET. However, such a naive methodology will sub-

stantially increase the analysis overestimation. As a result, such an analysis

methodology will not be very useful in practice.

In subsequent sections, we shall discuss several efforts in addressing the

challenges mentioned in this section. Therefore, this monograph primarily fo-

cuses on the micro-architectural modeling stage of WCET analysis (cf. Figure

2.1), in the context of multi-core processors. We shall also perform a survey

of other related techniques to address such challenges.

3

WCET analysis for multi-core platforms

In the preceding section, we have discussed the challenges in building time-

predictable systems for multi-core platforms. In this section, we shall de-

scribe recent efforts in addressing such challenges. Specifically, we shall de-

scribe a comprehensive analysis methodology for predicting the worst-case

execution time (WCET) of embedded software. We shall also perform a sur-

vey of related techniques proposed by different research groups along this

line.

As mentioned in the previous section, resource sharing is a key feature

in multi-core platforms. Such resource sharing in multi cores primarily hap-

pens via shared caches and shared buses. Therefore, in the following dis-

cussion, we shall mainly concentrate on the modeling of shared caches and

shared buses. We shall also describe the interaction between the timing mod-

els of shared resources and the rest of the micro-architecture (e.g. pipeline

and branch prediction).

217

218 WCET analysis for multi-core platforms

3.1 Modeling shared caches

Shared cache modeling revolves around the modeling of caches on single

core processors. Therefore, we shall start with a general background on cache

analyses for single core platforms.

3.1.1 Background on cache modeling

Cache modeling has been an active topic of research for several decades. In

modern embedded processors, caches are several order of magnitudes faster

than the main memory. Therefore, to accurately analyze the timing behavior

of an embedded software, it is crucial to know whether a particular memory

reference can be serviced from cache. Existing research on cache modeling

estimates the overall cache performance of a program via static analysis.

Earlier work on cache analysis [55] used integer linear programming

(ILP) to analyze the cache behavior of a program. However, ILP-based mod-

eling of caches faces scalability problems for large caches and programs with

complex structures. Subsequently, a pioneering work [80] introduces the us-

age of abstract interpretation (AI) for cache analysis of embedded software.

Analysis based AI has been shown to scale well and has also been adopted

in industry-strength tool chain, such as aiT [1]. AI-based analysis categorizes

each memory reference as always hit (AH), always miss (AM) or unclas-

sified (NC). The memory block corresponding to an AH categorized mem-

ory reference is always in cache when accessed. On the contrary, the mem-

ory block corresponding to an AM categorized memory reference is never in

cache when accessed. If a memory reference cannot be categorized as AH or

AM, it is categorized as unclassified (NC). The precision of AI-based cache

analysis can be improved significantly via virtual inlining and virtual un-

rolling (VIVU) [80]. Using virtual inlining, different calling contexts of a

procedure are treated differently. Since the calling context may significantly

affect the content in caches, virtual inlining plays a crucial role in improving

the accuracy of static cache analysis. Besides, using virtual unrolling, each

loop is unrolled once to distinguish the cold cache misses in the first iter-

ation. The cache analysis proposed in [80] deals with single-level caches in

single-core architectures. Based on abstract interpretation, several works have

3.1. Modeling shared caches 219

subsequently extended the single-level cache analysis to multi-level caches

[40, 19], data caches [45] and shared caches [39, 56, 85].

Analysis of shared caches is more complex due to the presence of inter-

core cache conflicts. Such inter-core cache conflicts are generated by tasks

running on different cores. Until now, only a few solutions have been pro-

posed for analyzing timing behaviors of shared caches [56, 39, 85]. How-

ever, all of them suffer from overestimating the inter-core cache conflicts. In

the subsequent section, we shall describe an analysis framework that system-

atically combines abstract interpretation and path-sensitive verification (e.g.

model checking and symbolic execution) to improve the estimation of inter-

core cache conflicts. Such a framework improves the accuracy of a baseline

AI-based analysis via repeatedly using model checker calls. As a baseline,

the framework uses the AI-based shared cache analysis presented in [56].

Recall that AI-based cache analysis categorizes memory references as al-

ways hit (AH), always-miss (AM) and unclassified (NC). The work proposed

in [56] first analyses the shared cache in the absence of inter-core cache con-

flicts and derives the categorization (i.e. AH, AM or NC) of each memory

reference. Subsequently, a separate inter-core conflict analysis phase is em-

ployed to refine the categorization of each memory reference. Such a refine-

ment primarily takes into account the inter-core cache conflicts generated in

the shared cache. To be more precise, inter-core conflict analysis may change

the categorization of a memory block m from always hit (AH) to unclassified

(NC). This analysis phase first computes the number of unique conflicting

shared cache accesses from different cores. Then it is checked whether the

number of conflicts from different cores can potentially replace m from the

shared cache. More formally, cache hit/miss categorization (CHMC) of m is

changed from always hit (AH) to unclassified (NC) if and only if the follow-

ing condition holds:

N − age(m) < |Mc(m)| (3.1)

where |Mc(m)| captures the number of conflicting memory blocks from dif-

ferent cores which may potentially access the same set in the shared cache

as m. N represents the associativity of the shared cache and age(m) cap-

tures the age of memory block m in the shared-cache set in the absence of

inter-core conflicts. Note that age(m) captures the relative position of mem-

ory block m in the respective cache set, when memory blocks are ordered in

220 WCET analysis for multi-core platforms

terms of eviction. Therefore, 1 ≤ age(m) ≤ N and N − age(m) unique

memory blocks are sufficient to evict out m from the cache. We call the term

N − age(m) as residual age of m1.

3.1.2 A scalable approach for shared cache analysis

In the preceding section, we have argued that the modeling of shared caches

is more challenging due to the presence of inter-core cache conflicts. In this

section, we shall present a scalable solution [21] that significantly improves

the analysis precision over the state-of-the-art shared cache analysis.

Basic idea

Cache analysis for real-time systems is usually accomplished by abstract in-

terpretation. This involves estimating the cache behavior of a basic block B

by considering the incoming flows to B in the control flow graph. The mem-

ory accesses of the incoming flows are analyzed to determine the cache

hits/misses for the memory accesses in B. Since programs contain loops,

such an analysis of memory accesses involves an iterative fixed-point com-

putation via a method known as abstract interpretation (AI), as discussed in

Section 3.1.1. Abstract interpretation is usually efficient, but the results are

often not precise. This is because the estimation of memory access behaviors

are “joined" at the control flow merge points – resulting in an over-estimation

of potential cache misses returned by the method.

In this section, we present a cache analysis framework which improves

the precision of abstract interpretation, without appreciable loss of efficiency.

This framework augments abstract interpretation with a gradual and con-

trolled use of path sensitive program verification methods (e.g. model check-

ing and symbolic execution). Because of path sensitivity in the search pro-

cess, program verification methods are known to be of high complexity.

Hence AI-based analysis cannot be naively replaced with standard program

verification methods such as model checking or symbolic execution. Recent

works [60] which have advocated combination of abstract interpretation and

model checking for multicore software analysis – restrict the use of model

checking to program path level; cache analysis is still accomplished only by

1This metric is also called resilience of m according to [7]

3.1. Modeling shared caches 221

abstract interpretation. Indeed almost all current state-of-the-art WCET ana-

lyzers (such as Chronos [52], aiT [1]) perform cache analysis via some variant

of abstract interpretation. Model checking is usually found to be not scalable

for micro-architectural analysis because of the huge search space that needs

to be traversed [82, 44].

The baseline analysis is abstract interpretation. Potential cache conflicts

identified by abstract interpretation are then subjected to a path sensitive pro-

gram verification method. The goal is to rule out “false" cache conflicts which

can occur only on infeasible program paths. Such false conflicts are reported

by abstract interpretation since its join operator (which merges the estimates

from paths at control flow join points) conservatively considers all possi-

ble cache conflicts on any path in the control flow graph. The path sensitive

search in program verification naturally rules out the infeasible program paths

and the cache conflicts incurred therein.

One appealing nature of this analysis method is that the results are always

safe. The analysis starts with the results from abstract interpretation and grad-

ually refines the results with repeated runs of program verification. We show

the instantiation of the framework with two different program verification

methods – model checking and symbolic execution.

Model checking is a property verification method which takes in a sys-

tem/program P and a temporal logic property ϕ, where ϕ 2 is interpreted over

the execution traces of P . It checks whether all execution traces of P satisfy

ϕ. Given a potentially conflicting pair of memory blocks, we can model check

a property that the pair never conflicts in any execution trace of the program.

If indeed the conflict pair is introduced due to the over-approximation in ab-

stract interpretation – model checking verifies that the conflict pair can never

be realized. We can then rule out the cache misses estimated due to the con-

flict pair and tighten the estimated time bounds.

Symbolic execution refers to executing a program with symbolic or un-

instantiated inputs - as opposed to concrete inputs. Symbolic execution may

be static (by which we mean execution of all possible paths in a program) or

dynamic (by which we mean execution of a specific program path). We show

the use of static symbolic execution (as embodied in the KLEE toolkit [2])

for refining shared cache analysis.

2We consider only Linear Time Temporal Logic properties here.

222 WCET analysis for multi-core platforms

Most often, a symbolic execution engine relies on the power of constraint

solving. Constraint solving technology has made a significant progress with

the advances in satisfiability modulo theory (SMT). As mentioned, in sym-

bolic execution, a program is executed with symbolic input values (rather

than concrete input values in normal execution). Since the input values are

symbolic, a branch instruction in the program may lead to multiple execution

scenarios, as both the true and false legs of the branch might be satisfiable.

Such multiple execution scenarios are reasoned about independently by the

symbolic execution engine. The feasibility of a path at a branch instruction is

checked on-the-fly during the execution by sending a query to an SMT-based

constraint solver. Given a formula ϕ to check at a particular program location,

the constraint solver is also used to check the satisfiability of ϕ whenever the

same program location is visited by any execution scenario during the sym-

bolic execution.

Due to the inherent path sensitive nature of symbolic execution, spuri-

ous cache conflicts can be eliminated if they are introduced due to the over-

approximation of abstract interpretation. As the SMT technology is continu-

ously evolving, we believe that the composition of abstract interpretation and

symbolic execution leads to an exciting opportunity for WCET analysis.

Recall that abstract interpretation merges the results from different paths,

via the join function. Thus, abstract interpretation is not necessarily path-

sensitive. On the other hand, the property checked in a single run of pro-

gram verification (via model checking or symbolic execution) involves cer-

tain cache conflicts identified by abstract interpretation. The path sensitive

search by program verification then detects whether these conflicts are indeed

realizable. Overall, the scalability of such a framework is never in question.

Given a time budget T , one can first employ abstract interpretation and then

employ as many runs of program verification as (s)he can within time T . Of

course, given more time, more precise analysis results (in the form of poten-

tial cache misses) are achieved.

General framework

Figure 3.1(a) demonstrates the general cache analysis framework. Specif-

ically, Figure 3.1(a) highlights the relevant portion of micro-architectural

modeling (i.e. the modeling of caches) in a typical WCET analysis frame-

3.1. Modeling shared caches 223

Cache analysis

by AI

Processor

configuration

Program

CFG

Conflicts in

cache

Modify

conflicts Refinement
success

Other Micro−architectural

modeling (pipeline, branch

predictor etc)

to refine
conflicts

timeout

Modify code failure
Refinement

All refinements
done

Refinement
through

model checker

/ static symbolic

execution

Micro−architectural modeling

(a)

Task Task

Core 1 Core 2

L1 cacheL1 cache

Shared L2 cache

Inter−core cache conflicts

(b)

Figure 3.1: (a) General framework of cache modeling which combines abstract interpreta-

tion and path-sensitive verification, note that the block “Micro-architectural modeling” is con-

nected with the rest of the WCET analysis framework as shown in Figure 2.1, (b) inter-core

cache conflicts

224 WCET analysis for multi-core platforms

work (cf. Figure 2.1). The goal is to refine the AI-based cache analysis via

path-sensitive verification (e.g. model checking, symbolic execution). Cold

cache misses are unavoidable and AI-based cache analysis can accurately pre-

dict the set of cold cache misses. With the advent of multi-core architectures,

it has become important to precisely estimate the timing behavior of shared

caches. AI-based shared cache analysis suffers from overestimating the inter-

core cache conflicts, which is generated in the shared cache by a task running

on a different core. Figure 3.1(b) pictorially represents the inter-core cache

conflicts generated in the shared cache.

Even though the basic goal of this framework is cache conflict refinement,

the notion of cache conflict may vary depending on the outcome of AI-based

cache analysis. During inter-core cache conflict refinement, we get the cache

hit miss classification (AH, AM or NC) of each memory block. A memory

block might be categorized as NC due to its conflicts with more than one

memory block. Therefore, by refining one NC categorized memory block

into AH, we may reduce more than one cache conflict pairs, which in turn

results in an improvement of WCET.

In Figure 3.1(a), the dotted boxed portion captures the shared cache con-

flict refinement. The refinement of cache conflicts is iteratively performed

via path-sensitive verification (e.g. model checking or symbolic execution)

on a modified program. We rule out the cache accesses for which AI has

generated precise information. Therefore, the refinement phase using model

checking or symbolic execution works on a very small subset of all cache ac-

cesses. The iterative refinement through path-sensitive verification eliminates

several infeasible paths from the candidate program, resulting in the removal

of several unnecessary conflicts generated in a particular cache set. The itera-

tive refinement is continued as long as the time budget permits or all possible

refinements have been performed.

There are two important advantages of such analysis framework: first, the

iterative refinement can be terminated at any point if the time budget is ex-

ceeded. The resulting cache conflicts, after a partial refinement, can safely be

used for estimating the WCET. Secondly, such a framework can be composed

with other micro-architectural features (e.g. pipeline and branch prediction)

and thereby, not affecting the flexibility of AI-based cache analysis.

3.1. Modeling shared caches 225

Code transformation to refine inter-core cache conflicts

The refinement of cache conflicts is performed by transforming the original

program into an instrumented program. This typical transformation can be

captured by a quintuple 〈L, A, Pl, Pc, I〉 as follows:

• L : Set of conflicting memory blocks in the cache set for which the

refinement is being made.

• A : The property which need be checked by the path-sensitive verifi-

cation method. The property is placed in form of an “assertion” clause,

which validates A for all possible execution traces of the modified

code.

• Pl : Set of positions in the code where the conflict count would be

incremented. These are the set of positions where some memory block

in L might be accessed.

• Pc : Position in the code where property A would be placed.

• I : Set of positions in the code to reset conflict count.

Any refinement pass corresponds to a specific cache set and, therefore, con-

flicts are defined for a specific cache set in each code transformation. Con-

sequently, computation of L and Pl depends only on the cache set for which

the conflicts are being refined.

In subsequent sections, we shall describe the instantiation of the frame-

work in Figure 3.1 for refining shared cache conflicts (as shown in Figure

3.1(b)). We shall also show how A, Pc and I are configured for refining the

inter-core cache conflicts.

For our subsequent discussions, we shall use the example in Figure 3.2.

Parameter z can be considered as an input to the program. The control flow

graph (CFG) of the loop body and the accessed memory blocks are also

shown in Figure 3.2.

A brief background on model checking

Model checking [26] is a state space exploration method for formal verifica-

tion of program properties. The general formulation of the model checking

226 WCET analysis for multi-core platforms

void f(int z) {
int i = 0;
while (i < 100) {

if (z >= 0) {
x++;

} else {
x−−;

}
if (z == −2) {

x−−;
} else {

x++;
}

}

}
m4

m2m1

m3

m0

m6m5

i = i+2;

False

FalseTrue

True

Figure 3.2: Example program and its corresponding control flow graph (CFG)

problem is simple, it checks whether a finite state machine M satisfies a prop-

erty ϕ

M |= ϕ

To explain the use of model checking for program verification we need to

explain how we get M, ϕ and what it means for M to satisfy ϕ.

The finite state machine M is automatically extracted from the program

being verified. Such a finite state machine is formally described as a quadru-

ple 〈S, S0, →, L〉 where S is the set of nodes (also called states) in the finite

state machine, S0 ⊆ S is the set of initial states, →⊆ S × S is the set of

edges (also called transitions) in the finite state machine, and L : S → 2AP

is a labeling function, which maps a given state s to the atomic propositions

true in the state s. The atomic propositions true in a given state are drawn

from AP , the set of all atomic propositions.

The properties verified are temporal logic properties, which constrain or-

dering of specific events in program executions. In this discussion, we are

only concerned with Linear-time temporal logic (LTL). The syntax of LTL

properties is recursively defined as follows

ϕ = true | false | AP | ¬ϕ | ϕ ∧ ϕ | Xϕ | Gϕ | Fϕ | ϕUϕ | ϕRϕ

The formula true is always true and the formula false is never true. Further,

the atomic propositions AP form the basic building blocks of the formula. A

LTL property is constructed using the following

3.1. Modeling shared caches 227

• Atomic propositions AP

• propositional logic operators

• temporal logic operators X (next), G (globally), F (finally), U (until),

R (release).

For this framework, the only properties used are in the form of assertions

which should hold in a control location of the program. For example consider

the assertion C_1 ≤ 1 which should hold in control location P2 in Figure

3.4. It corresponds to a linear time temporal logic property

G(pc == P2 ⇒ C_1 ≤ 1)

meaning whenever the program counter variable (denoted pc in the above

property) holds the value “P2" (i.e., when control location P2 is reached

during program execution), we must have C_1 ≤ 1. Given an execution trace

π of the program, we can check this property by looking for all the visits to

control location P2 in the trace π, and then checking whether for each of

these visits C_1 ≤ 1 holds true in the corresponding program state.

Finally, we explain what it means for a finite state machine M to satisfy a

given LTL property ϕ. The semantics of LTL dictates that M satisfies ϕ if and

only if all the execution traces of M satisfy ϕ. In the context of our example

property G(pc == P2 ⇒ C_1 ≤ 1) — even if one single trace of state

machine M is such that it has a visit to control location P2 when C_1 ≤ 1

does not hold – we will say that M does not satisfy the property G(pc ==

P2 ⇒ C_1 ≤ 1). Such an execution trace π will then be considered as a

counter-example trace of the property.

Refinement of inter-core cache conflicts via model checking

We describe the refinement of inter-core conflicts generated in a shared cache

(as shown in Figure 3.1(b)). Recall from Equation 3.1 that the precision of

shared L2 cache analysis largely depends on the accuracy of estimating the

term |Mc(m)|. The model checking pass in the analysis framework refines

the set Mc(m) by exploiting infeasible paths in the conflicting task.

Figure 3.3 demonstrates the instantiation of the general framework for

inter-core conflict refinement. Specifically, the refinement phase considers

228 WCET analysis for multi-core platforms

Assertion is violated

(inter−core cache conflicts realized)

Inter−core cache conflicts reported

All possible

refinements

have been

checked by

a model checker

Code transformation

Assertion is verified

(spurious inter−core cache conflicts)

Memory blocks inside loops

which are changed from AH

to NC during shared cache

conflict analysis

by AI to another NC categorized

memory block
Refinement

by model checker

Modify categorization

from NC to AH

end

end

Time budget

expired

〈L,A,Pl,Pc, I〉

A

A

Figure 3.3: Refinement of shared cache conflict analysis

only the memory blocks whose categorizations are changed from AH to NC

in a shared cache conflict analysis phase. Consider such a memory block m

mapping to an N -way associative shared L2 cache set i. Disregarding the

inter-core conflicts, assume the maximum age of m in cache set i is denoted

by age(m). Therefore, if the amount of inter-core conflicts (in cache set i) is

bounded by N − age(m), we can guarantee that m will remain a shared L2

cache hit, despite inter-core conflicts. Recall that N − age(m) is called the

residual age of m. Further assume tc is a task which may generate inter-core

cache conflicts and Ci serves the purpose of counting inter-core conflicts in

shared L2 cache set i generated by tc. Therefore, the model checker is used to

verify an “assertion” property Ci ≤ N − age(m). We need to check the total

amount of cache conflicts generated by task tc. Therefore, in the transformed

code, Ci is initialized only once, before any cache blocks accessed by tc and

the “assertion” property is checked just before the exit point of tc.

For the example in Figure 3.2, we assume that m1 and m5 map to the

same cache set of a 2-way set associative L2 cache. Further, assume that we

are trying to refine the inter-core cache conflicts generated to a task t′, which

is running in parallel on a different core with the task in Figure 3.2. Consider

t′ accesses a memory block m′, which maps into the same shared L2 cache set

as m1 and m5. Finally, assume that m′ is an all-miss (AM) or unclassified

(NC) in L1 cache, but an all-hit (AH) in L2 cache with residual age one,

in the absence of inter-core cache conflicts. Previous analysis will compute

|Mc(m
′)| as 2 (due to m1 and m5 in the conflicting task). Since the residual

age of m′ is one, the categorization of m′ will be changed to NC (Equation

3.1. Modeling shared caches 229

m1

m5

m4

m2

m0

m3

m6

void f(int z) {
int i = 0;
while (i < 100) {

if (z >= 0) {
x++;

} else {

}
if (z == −2) {

x−−;
} else {

x++;
}

}

}

x−−;

int flag_m5 = 0;

int C_1 = 0;

int flag_m1 = 0;

void f(int z) {

int i = 0;

if (flag_m1 == 0) {

flag_m1 = 1;

}

while (i < 100) {

if (z >= 0) {

}

x++;
} else {

x−−;

if (z == −2) {

}

flag_m5 = 1;

if (flag_m5 == 0) {

x−−;
} else {

x++;
}

}

assert(C_1 <= 1);

C_1++;

C_1++;

Model

checker

query

Original code Control flow graph

loc1

loc2

loc3

loc4

Modified code

}

i = i + 2;

False

FalseTrue

True

i = i + 2;

Figure 3.4: Inter-core cache conflict refinement

3.1), leading to unnecessary conflict misses. The code is modified to check

whether the number of unique inter-core conflicts is less than or equal to the

residual age of m′. The transformation is similar to Figure 3.4 where C_1

serves the purpose of counting unique cache conflicts with m′ in shared L2

cache. The model checker will satisfy the assertion P2 in Figure 3.4 due to

the infeasible path m1-m3-m5. Consequently, we shall be able to derive that

the amount of inter-core conflicts with m′ never exceeds the residual age of

m′. Therefore, the categorization of m′ is kept all-hit (AH). Configuration

of the code transformation framework 〈L, A, Pl, Pc, I〉 is as follows: L =

{m1, m5}, Pl = {L1, L2}, A is the “assertion” clause checking the property

C_1 ≤ 1, Pc = {P2} and I = {I1}.

Although we show the transformation for a two core system, this frame-

work does not have the strict limitation of working only for two cores. How-

ever, one model checker invocation can verify only one task. Therefore, to

refine conflicts from X different tasks t1, t2, . . . , tX running on X different

230 WCET analysis for multi-core platforms

cores, an additional compose phase in the transformation is applied first. The

compose phase sequentially composes t1, t2, . . . , tX (in any order) into a sin-

gle task T . The infeasible paths in any task t1, t2, . . . , tX are preserved in

task T . Consequently, the code transformation technique can be applied to T

in exactly the same manner as described in the preceding to refine conflicts

from t1, t2, . . . , tX . Since the composition is sequential, number of conflicts

are accumulated from all X cores. Model checker refinement passes can then

be carried out on task T .

A brief background on symbolic execution

Symbolic execution [50] interprets a program with symbolic input values

(rather than concrete input values). Any expression, whose value depends

directly or indirectly on these symbolic input variables, are treated as sym-

bolic expressions throughout the execution. At any point of interpreting the

program, symbolic execution maintains a set of execution states. Each such

execution state is associated with a constraint store. The constraint store is

a symbolic formula capturing the set of inputs along which the respective

execution state is reached. Let us consider an execution state which has to

interpret a branch instruction. At a branch location, the symbolic execution

must decide which branch to take. If the branch instruction contains a sym-

bolic expression, such a decision making involves constraint solving. If the

constraint solver can decide which branch to take, the execution state pro-

ceeds along the respective branch (without creating any additional execution

state). Such an interpretation of branch instruction is usually called a “non-

forking” execution. The more complex scenario appears when the outcome

of a branch instruction cannot be decided – which means that there is at least

one input which satisfy the true leg of the branch and there is also at least one

input which satisfy the false leg of the branch. In such a scenario, symbolic

execution creates two parallel execution states (called “forking” execution),

one for the true leg of the branch (say true state) and the other for the false leg

of the branch (say false state). Assuming that the branch instruction checks a

condition θ and the constraint store of the execution state before branch was

Φ, the constraint store of the true state is updated as Φ ∧ θ and the constraint

store of the false state is updated as Φ∧¬θ. Both the true state and false state

3.1. Modeling shared caches 231

void f(int z) {

while (i < 100) {

if (z >= 0) {
x++;

} else {
x−−;

}
if (z == −2) {

x−−;
} else {

x++;
}

}

}

int i = 0, x = 0;

i = i + 2;

x++ x = 0

x = 1

x−−
x = 0

x=−1

x++

x = 2

x−− x++

x = 0x = −2

i = 0, x = 0

constraint
store

constraint
store

constraint
store

constraint
store

constraint
store

constraint
store

x = −1 x = −1x = 1

z ≥ 0

i < 100

z == -2 z == -2

z ≥ 0 z ≥ 0
∧ ∧

z < 0 z < 0

SATISFIABLE SATISFIABLE
UNSATISFIABLE

FORMULA

SATISFIABLE

z 6= -2 z 6= -2
z = -2 z = -2

∧
∧

z ≥ 0SATISFIABLE z < 0 SATISFIABLE

i < 100 i < 100 i < 100

(INFEASIBLE)

(a) (b)

Figure 3.5: (a) Example program, which is the same as in Figure 3.2, (b) symbolic execution

inherit the same computation state before the branch location, but after the

branch location, the two execution states proceed independently.

We shall illustrate the work flow of a symbolic execution engine with the

example in Figure 3.5. Let us assume that z is an input to the program and

therefore, z is marked as symbolic. If the value of an expression does not

depend on any of the symbolic variables, the expression value is treated as

concrete (i.e. input independent). In Figure 3.5, any update on variable i and

x are interpreted as concrete values, as the updates on i and x are not data

dependent on the value of z.

Recall that a constraint store is maintained for each execution state cre-

ated during symbolic execution. The constraint store is a symbolic formula

on the input variables which must be satisfied to reach the respective execu-

tion state. The constraint store is the logical formula true at the beginning of

the program and is adjusted at each branch instruction. In Figure 3.5(b), the

program hits the i < 100 branch instruction first. Since i is not an input and

is initialized 0, only the true leg of the branch instruction is interpreted.

However, consider the branch instruction z ≥ 0, when being hit for the

first time. At this point, the constraint store is the logical formula true. This

232 WCET analysis for multi-core platforms

branch condition is sent as a query to the constraint solver to decide the condi-

tion outcome (i.e. true or false). The constraint solver consults the constraint

store to decide the outcome of the branch condition. Since the constraint store

is the logical formula true, the outcome of z ≥ 0 could be both true or false

depending on the value of input z. Therefore, the symbolic execution forks

two different execution states for each leg of the branch instruction. The con-

straint store at the true leg is updated as z ≥ 0 and at the false leg as z < 0.

The content of the constraint store is shown beside the control flow edges in

Figure 3.5(b).

Now consider the execution state with constraint store z ≥ 0. When this

execution state hits the branch instruction z == −2, the constraint solver

checks the satisfiability of the formula z ≥ 0 ∧ z = −2, which is clearly

unsatisfiable. The unsatisfiability of such formula can be checked quickly by

an SMT solver with the theory of linear integer arithmetic. Therefore, the

symbolic execution does not create any execution state which corresponds to

the unsatisfiable constraint store z ≥ 0∧z = −2 (as marked “INFEASIBLE”

in Figure 3.5(b)).

When the execution state with constraint store z < 0 hits the branch lo-

cation z == −2, both the formulae z < 0 ∧ z = −2 and z < 0 ∧ z 6= −2

are satisfiable for some input. Therefore, the symbolic execution forks two

execution states accordingly. As shown in Figure 3.5(b), both these execu-

tion states inherit the value of x = −1 before the branch location z == −2,

however, proceeds independently thereafter to update x = −2 (for the exe-

cution state with constraint store z < 0 ∧ z = −2) and update x = 0 (for the

execution state z < 0 ∧ z 6= −2), respectively.

Eventually, only three different execution states are created (as shown in

Figure 3.5(b)) with their respective constraint stores as follows:

• z ≥ 0 ∧ z 6= −2,

• z < 0 ∧ z = −2, and

• z < 0 ∧ z 6= −2

The symbolic execution is terminated when it finishes interpreting all the

instructions in all the three execution states (as shown in the preceding).

3.1. Modeling shared caches 233

int flag_m5 = 0;

int C_1 = 0;

int flag_m1 = 0;

void f(int z) {

int i = 0;

if (flag_m1 == 0) {

flag_m1 = 1;

}

while (i < 100) {

if (z >= 0) {

}

x++;
} else {

x−−;

if (z == −2) {

}

flag_m5 = 1;

if (flag_m5 == 0) {

x−−;
} else {

x++;
}

}

}
assert(C_1 <= 1);

C_1++;

C_1++;

I1

L1

P2

L2

i = i + 2;

C_1=1

query

UNSATISFIABLE

C_1=1

Unreachable
assertion

C_1=0

UNSATISFIABLE

UNSATISFIABLE

query

query
C_1=0

Solver

Solver

Solver

C_1 = 0, flag_m5 = 0

C_1 = 0, flag_m5 = 0

C_1=0

C_1=1

C_1 = 0, flag_m5 = 0

C_1=0

or

C_1=1

C_1 = 0, flag_m1 = 0

C_1=1

C_1=1

C_1=1 (UNEXPLORED)

z ≥ 0

i < 100

i < 100(UNEXPLORED)

C 1 = 0
i = 0

(UNEXPLORED)

z ≥ 0

i < 100

z < 0∧
z ≥ 0

i < 100

z ≥ 0

z 6= −2∧

z < 0∧
z ≥ 0

z = −2∧

z ≥ 0 ∧ z = −2 C 1++

z == -2

z == -2
flag m5 == 0

flag m5 = 0

Solver query

assert(C 1 ≤ 1)
C 1 = 0 ∧ C 1 ≤ 1

C 1 = 1 ∧ C 1 ≤ 1

assert(C 1 ≤ 1)

C 1++

flag m1 == 0

C 1++

(a) (b)

Figure 3.6: (a) Transformed code for checking cache conflict, (b) checking the assertion dur-

ing static symbolic execution

Refinement of inter-core cache conflicts via symbolic execution

Symbolic execution has successfully been applied to discover many critical

functionality bugs [17]. At a high level, the code transformation framework

can be viewed as reducing the problem of cache timing checking to function-

ality checking. Recall that the code transformation framework contains an

assertion property A to check whether certain cache conflicts in the program

are spurious. This assertion property can be checked for validity using sym-

bolic execution. If the assertion property A is violated at any execution state

created by the symbolic execution, the entire symbolic execution is aborted.

Such an abnormal termination of the program captures the fact that certain

cache conflicts (captured by A) can be realized for some execution of the pro-

gram and therefore, such cache conflicts are not spurious. On the other hand,

if the symbolic execution is not aborted, we can prove that the introduced as-

234 WCET analysis for multi-core platforms

sertion holds over all possible executions of the program. Consequently, the

cache conflict captured by the assertion property is spurious.

We shall demonstrate the refinement process through the example in Fig-

ure 3.6. Figure 3.6(a) shows the instrumented code for inter-core cache con-

flict refinement (we use the same example from Figure 3.4). Figure 3.6(b)

shows the cache conflict refinement process via symbolic execution. Figure

3.6(b) shows that only one execution state (among all three) can execute the

assertion property involving the variable C_1. As evidenced by Figure 3.6(b),

the execution state interpreting the assertion property captures an input condi-

tion z ≥ 0. Since symbolic execution interprets the program, at each program

point it holds the value of all the registers and memory locations. At the as-

sertion location, the respective execution state checks whether the currently

stored values satisfy the assertion. Since C_1 has a value of zero initially, a

formula of the form C_1 = 0 ∧ C_1 ≤ 0 is sent to the constraint solver as a

query. If the constraint solver returns a satisfiable formula, we can conclude

that the assertion property holds for the corresponding execution. Note that

C_1 is incremented only for the execution states which satisfy input condi-

tion z = −2. On the other hand, the assertion property is reachable only

if the input condition z ≥ 0 is satisfied. As a result, none of the execution

states which increment the variable C_1 can reach the assertion property (as

marked “Unreachable assertion” in Figure 3.6(b)). Consequently, whenever

the assertion property is reached, the same formula (i.e. C_1 = 0∧C_1 ≤ 0)

is sent to the constraint solver. Therefore, symbolic execution is never aborted

for the example and we can conclude that the cache conflicts captured by the

instrumented code in Figure 3.6(b) cannot appear in any real execution.

Note that the symbolic execution engine tries to reason about a program

path-by-path. Due to this path sensitive reasoning process, such a symbolic

execution may generate very precise results compared to an equivalent ab-

stract interpretation based analysis. Since the sole purpose of the refinement

process is to check the inserted assertion property, the symbolic execution

can be aborted as soon as a violation of the assertion property is reached. As

a result, a violation of the assertion is likely to be checked much more quickly

than the validity of the same assertion. This means that unsuccessful refine-

ments of cache conflicts usually take less time to manifest, compared to the

time taken to verify infeasible cache conflicts.

3.1. Modeling shared caches 235

Optimization

To reduce the number of calls to the model checker or symbolic execution,

the verification results could be cached. Recall that the “assertion” property

verified by the model checker or symbolic execution was always placed at

the end of the conflicting task during inter-core cache conflict refinement.

Therefore, the following optimization can be applied only during inter-core

cache conflict refinement.

The outcome of each refinement phase is stored as a triple

〈set, resultmc, conflicts〉. The triple has the following meaning:

• set : Cache set for which the refinement is being made.

• resultmc : Returned result by the verifier. Assume resultmc is one for

a successful verification and zero otherwise.

• conflicts : Number of conflicts in the assertion property. For an asser-

tion property Ci ≤ N , value of conflicts is N .

In Figure 3.4, we store 〈1, 1, 1〉 after the successful refinement (assum-

ing m1 and m5 map to cache set 1). Assume any other assertion of form

Cset′ ≤ N ′ is needed to be verified, where set′ is the cache set for

which the conflicts are being refined. We search the cached results of form

〈set, resultmc, conflicts〉 and take an action as follows:

• set = set′ ∧ resultmc = 0 ∧ N ′ ≥ conflicts: Assertion failure is

returned. If the refinement previously failed for a smaller number of

conflicts, it will definitely fail for more conflicts.

• set = set′ ∧ resultmc = 1 ∧ N ′ ≤ conflicts: Assertion success is

returned. If the refinement was previously satisfied for more number of

conflicts, it must be satisfied for less number of conflicts.

If none of the entries satisfy the above two conditions, a new call to the veri-

fier is made. Depending on the outcome, the new result is cached accordingly

for future use.

236 WCET analysis for multi-core platforms

Slot belonging to CPU 1

Slot belonging to CPU 2

Segment 1 (ω
1
) Segment 2 (ω

2
)

Round 1 Round 2

0 10 30 40 60 70 80 90 100 110 120

Figure 3.7: Example of a bus schedule

3.2 Modeling shared buses

In the previous section, we have discussed the challenges of modeling shared

caches and an approach to address such challenges. In this section, we shall

discuss the design and analysis methodologies of shared buses, which is an-

other crucial component for building time-predictable multi-core systems. In

the following, we shall start with an illustrative example and subsequently,

we shall describe techniques to model the timing behavior of shared buses

(some part of the content has previously been published in [69, 9, 22, 18]).

Specifically, in Section 3.2.3 and in Section 3.2.4, we shall describe analy-

sis of buses for compositional architectures (as explained in Section 2.1.2)

and later in Section 3.3, we shall describe analysis methodologies for non-

compositional architectures.

3.2.1 Bus model and an illustrative example

A precondition for achieving predictability is to use a predictable bus ar-

chitecture. Therefore, it is useful to consider a TDMA-based bus arbitration

policy, which is suitable for modern system-on-chip designs with QoS con-

straints [71, 64, 31].

The behavior of the bus arbiter is defined by the bus schedule, consisting

of sequences of slots representing intervals of time. Each slot is owned by

exactly one core, and has an associated start time and an end time. Between

these two time instants, only the core owning the slot is allowed to use the

bus. A bus schedule is divided into segments, and each segment contains a

specific round (i.e. a sequence of slots) that is repeated periodically within

the segment. See Figure 3.7 for an example.

The bus arbiter stores the bus schedule in a dedicated external memory,

and grants access to the cores accordingly. If core CPUi requests access to

the bus in a time interval belonging to a slot owned by a different core, the

3.2. Modeling shared buses 237

Segment start

Segment length

0

60

Processor ID 1

Slot size 10

Processor ID 2

Slot size 20

Segment 1

Round 1

Segment start

Segment length

60

120

Processor ID 1

Slot size 10

Processor ID 2

Slot size 10

Segment 2

Round 2

Figure 3.8: Bus schedule table representation

transfer will be delayed until the start of the next slot owned by CPUi. A

bus schedule is defined as a sequence of several segments and this sequence

of segments is then repeated periodically. A table representation of the bus

schedule in Figure 3.7 can be found in Figure 3.8.

To limit the required amount of memory on the bus controller needed to

store the bus schedule, a TDMA round can be subject to various complexity

constraints. A common restriction is to let every core own, at most, a specified

number of slots per round. Also, one can let the sizes be the same for all slots

of a certain round, or let the slot order be fixed.

A motivational example Consider two tasks running on a multi-core

system with two cores and a shared communication infrastructure according

to section 2. Each task has been analyzed with a traditional WCET tool, as-

suming a single core system, and the resulting Gantt chart of the worst-case

scenario is illustrated in Figure 3.9a. The dashed intervals represent cache

misses, each of them taking six time units to serve, and the white solid areas

represent segments of code not using the bus. The task running on core 2 is

also, at the end of its execution, transferring data to the shared memory, and

this is represented by the black solid area.

Since the tasks are actually running on a multi-core system with a shared

communication infrastructure, they do not have exclusive access to the bus

handling the communication with the memories. Hence, some kind of ar-

bitration policy must be applied to distribute the bus bandwidth among the

238 WCET analysis for multi-core platforms

CPU1

CPU2

6 9 15 33 39 57

dl=63

6 11 17 24 36

CPU1

CPU2

BUS

6 9 18 36 49 67

dl=63

12 17 24 31 43

1 2 1 2 2 1

Deadline

violation!

CPU1

CPU2

BUS 2

6 9 15 33 39 57

dl=63

21 26

1 1 2

32 39 51

2 1

CPU1 CPU2 CPU1 CPU2

6 12 18 24 31 4943

a) Two Concurrent Tasks

b) FCFS Arbitration

c) TDMA Arbitration

Figure 3.9: Motivational example

tasks. The result is that when two tasks request the bus simultaneously, one

of them has to wait until the other has finished transferring. This means that

transfer times are no longer constant. Instead, they now depend on the bus

conflicts resulting from the execution load on the different cores. Figure 3.9b

shows the corresponding Gantt chart when the commonly used first-come-

first-served (FCFS) arbitration policy is applied.

The fundamental problem when performing worst-case execution time

analysis on multi-core systems is that the load on the other cores is in general

not known. For a task, the number of cache misses and their location in time

depend on the program control flow path. This means that it is very hard to

3.2. Modeling shared buses 239

τ
1

τ
2

τ
3

C
P
U
1

C
P
U
2

τ
1

τ
2

a) Task Graph b) Traditional Schedule

τ
3

0 64 192

1560

C
P
U
1

C
P
U
2

τ
1

τ
2

c) Predictable Schedule

τ
3

0 84 242

1880

B
U
S

ω
1

ω
2

ω
3

242188840

Figure 3.10: Overall approach example

foresee where there will be bus access collisions, since this will differ from

execution to execution. To complicate things further, the worst-case control

flow path of the task will change depending on the bus load originating from

the other concurrent tasks. In order to solve this problem and introduce pre-

dictability, a TDMA bus schedule is used which, a priori, determines exactly

when a core is granted the bus, regardless of what is executed on the other

cores. Given a TDMA bus schedule, the WCET analysis tool calculates a

corresponding worst-case execution time. Some bus schedules will result in

relatively short worst-case execution times, whereas others will be very bad

for the worst case. Figure 3.9c shows the same task configuration as previ-

ously, but now the memory accesses are arbitrated according to a TDMA bus

schedule.

3.2.2 Overall approach

For a task running on a multi-core system, as described in section 2, the

problem for achieving predictability is that the duration of a bus transfer de-

pends on the bus congestion. Since bus conflicts depend on the task schedule,

WCET analysis cannot be performed before that is known. However, task

scheduling traditionally assumes that the worst-case execution times of the

tasks to be scheduled are already calculated.

240 WCET analysis for multi-core platforms

The solution of this circular dependency (as mentioned in the preceding

paragraph) is based on the following principles:

1. A TDMA-based bus access policy, according to Section 3.2.1, is used

for arbitration. The bus schedule, created at design time, is enforced

during the execution of the application.

2. The worst-case execution time analysis is performed with respect to

the bus schedule, and is integrated with the task scheduling process, as

described in Algorithm 3.1.

We illustrate the overall approach with a simple example. Consider the appli-

cation in Figure 3.10a. It consists of three tasks – τ1, τ2 and τ3 – mapped on

two cores. The static cyclic scheduling process is based on a list scheduling

technique [27], and is performed in the outer loop described in Algorithm 3.1.

Let us, as is done traditionally, assume that worst-case execution times have

been obtained using techniques where each task is considered in isolation,

ignoring conflicts on the bus. These calculated worst-case execution times

are 156, 64, and 128 time units for τ1, τ2, and τ3, respectively. The deadline

is set to 192 time units, and would be considered as satisfied according to

traditional list scheduling, using the already calculated worst-case execution

times, as shown in Figure 3.10b. However, this assumes that no conflicts, ex-

tending the bus transfer durations (and implicitly the memory access times),

will ever occur. This is, obviously, not the case in reality and thus results

obtained with the previous assumption are wrong.

In this predictable approach, the list scheduler will start by scheduling

the two tasks τ1 and τ2 in parallel, with start time 0, on their respective core

(line 2 in Algorithm 3.1). However, we do not yet know the end times of

the tasks, and to gain this knowledge, worst-case execution time analysis has

to be performed. In order to do this, a bus schedule which the worst-case

execution times will be calculated with respect to (line 6 in Algorithm 3.1)

must be selected. This bus schedule is, at the moment, constituted by one bus

segment ω, as described in Section 3.2.1. Given this bus schedule, worst-case

execution times of tasks τ1 and τ2 will be computed (line 7 in Algorithm

3.1). Based on this output, new bus schedule candidates are generated and

evaluated (lines 5-8 in Algorithm 3.1), with the goal of obtaining those worst-

3.2. Modeling shared buses 241

case execution times that lead to the shortest possible worst-case response

time (WCRT) of the application.

Assume that, after selecting the best bus schedule, the corresponding

worst-case execution times of tasks τ1 and τ2 are 167 and 84 respectively.

We can now say the following:

• Bus segment ω1 is the first segment of the bus schedule, and will be

used for the time interval 0 to 84.

• Both tasks τ1 and τ2 start at time 0.

• In the worst case, τ2 ends at time 84 (the end time of τ1 is still unknown,

but it will end later than 84).

Now, we go back to step 3 in Algorithm 3.1 and schedule a new task, τ3,

on core CPU2. According to the previous worst-case execution time analysis,

task τ3 will, in the worst case, be released at time 84 and scheduled in parallel

with the remaining part of task τ1. A new bus segment ω, starting at time 84,

will be selected and used for analyzing task τ3. For task τ1, the already fixed

bus segment ω1 is used for the time interval between 0 and 84, after which

the new segment ω is used. Once again, several bus schedule candidates are

evaluated, and finally the best one, with respect to the worst-case response

time, is selected. Assume that the segment ω2 is finally selected, and that the

worst-case execution times for tasks τ1 and τ3 are 188 and 192 respectively,

making task τ3 end at 276 (since τ3 can start only after τ2, which in turn ends

at time 84). Now, ω2 will become the second bus segment of the bus schedule,

ranging from time 84 to 188, and this part of the bus schedule will be fixed.

Now, we repeat the same procedure with the remaining part of τ3 (which now

ends at time 242 instead of 276, since ω3 assigns all bus bandwidth to CPU2).

The final, predictable schedule is shown in Figure 3.10c, and leads to a worst

case response time (WCRT) of 242.

An outline of the algorithm can be found in Algorithm 3.1. We define

Ψ as the set of tasks active at the current time t, and this is updated in the

outer loop. In the beginning of the loop, a new bus segment ω, starting at

t, is generated and the resulting bus schedule candidate is evaluated with

respect to each task in Ψ. Based on the outcome of the WCET analysis, the

bus segment ω is improved for each iteration. The bus segments previously

242 WCET analysis for multi-core platforms

Algorithm 3.1 Overall approach

1. while not all tasks scheduled do

2. schedule new task at t ≥ θ
3. Ψ=set of all tasks that are active at time t
4. repeat

5. select bus segment ω for the time interval starting at t
6. determine the WCET of all tasks in Ψ
7. until termination condition

8. θ=earliest time a task in Ψ finishes

9. end while

generated before time t remain unaffected. After selecting the best segment

ω, θ is set to the end time of the task in Ψ that finished first. The time t is

updated to θ and we continue with the next iteration of the outer loop.

Communication tasks (e.g. message passing between two different com-

putation tasks) can be treated as a special class of computational tasks, which

are generating a continuous flow of private cache misses (i.e. cache misses

that lead to shared cache or main memory transactions) with no computa-

tional cycles in between. The number of private cache misses is specified

such that the total amount of data transferred on the bus, due to these misses,

equals the maximum length of the explicit message. Therefore, from an anal-

ysis point of view, no special treatment is needed for explicit communication.

In the rest of the section, when we talk about private cache misses (typically

L1 cache misses), it applies to both explicit and implicit communications.

3.2.3 TDMA-based WCET analysis

Performing worst-case execution time analysis with respect to a TDMA bus

schedule requires not only the knowledge about the number of cache misses

for a certain program path, but also their locations with respect to time.

Hence, each memory access needs to be considered with respect to the bus

schedule, granting access to the bus only during the slots belonging to the

requesting core. Calculating the worst-case execution time has to be done

with respect to the particular hardware architecture on which the task being

analyzed is going to be executed. Factors such as the instruction set, pipelin-

ing complexity and caches must be taken into account by the analysis. For

an application running on a compositional architecture (as described in Sec-

3.2. Modeling shared buses 243

tion 2.1.2), the analysis can be divided into subproblems processed in a lo-

cal fashion, for instance, computing the worst case latency from each micro-

architectural component. Besides, we can be sure that the local worst-case

always contributes to the worst-case globally.

For a predictable multi-core system with a shared communication struc-

ture, it is necessary to search through all feasible program paths and match

each possible bus transfer to slots in the actual bus schedule, keeping track of

exactly when a bus transfer is granted the bus in the worst case. This means

that the execution time of a basic block will vary depending on when it is exe-

cuted. Fortunately, for an application running on a compositional architecture,

efficient search-tree pruning techniques dramatically reduce the search space,

allowing for local analysis, just as for traditional WCET techniques.

For compositional architectures, the computation of bus delay can be at-

tributed at WCET calculation phase, as shown in Figure 2.6 at section 2.

Specifically, while computing the worst-case path, we can compute the ad-

ditional communication delay for each potential cache miss (i.e. memory ac-

cesses that may potentially access the shared bus) and accumulate the overall

delay in the final WCET calculation. In the subsequent section, we shall de-

scribe a simplified technique to integrate the bus delay into WCET calcula-

tion. This simplified technique is based on traversing the control flow graph

of the program, along with loop unrolling. It is, however, important to note

that implicit path enumeration (IPET) via ILP solver is generally used for

WCET calculation. In Section 3.3.7, we shall describe the integration of bus

modeling with the traditional IPET-based WCET calculation.

Multi-core WCET example

Consider a task τ executing on a system with two cores (core 1 and core 2).

The task is being mapped on core 1, and has start time 0. First, an annotated

control flow graph, as illustrated in Figure 3.11, is constructed. The rectan-

gular elements B, C, H, E, F in the graph represent basic blocks, and the

circles A, D, G, I represent control nodes gluing them together. The loop

starting at control node G will run at most three times, so the loop bound

is consequently set to 3. The annotated numbers in the basic blocks repre-

sent consecutive cycles of execution, in the worst case, not accessing the bus.

For instance, basic block B will, when executed, immediately – after 0 clock

244 WCET analysis for multi-core platforms

A

Root

B

0
2
5

C

0
9
3

D

E

0
9

F

7
1

G

Loop
Bound: 3

H

15

I

Sink

Figure 3.11: CFG example, the annotated numbers in each basic block capture consecutive

cycles of execution, in the worst case, not accessing the bus

0 10 20 30 40 50 60 70

...

Slot belonging to processor 1

Slot belonging to processor 2

Figure 3.12: TDMA bus schedule example

cycles – issue a cache miss. After this, 2 cycles will be spent without bus

accesses before the next (and last) cache miss occurs. Finally, 5 bus access-

free cycles will be executed before the basic block ends. Hence, the execution

time of basic block B will be (0+k1 + 2+k2 + 5) where k1 and k2 represent

the transfer times of the first and second cache miss respectively. Note that

usually, loop unrolling is performed in order to decrease the pessimism of the

analysis. This example is, however, purposely kept as simple as possible, and

therefore the loop has not been unrolled.

For a typical single-core system, all cache misses take the same constant

amount of time to process, and the execution time of basic block B would

be known immediately. However, for multi-core architectures such as the one

described in section 2, we must calculate the individual transfer times with

respect to a given TDMA schedule.

3.2. Modeling shared buses 245

Instead of a single core system, assume a multi-core system, as described

in Section 3.2.1, using the bus schedule in Figure 3.12. Core 1, on which

the task is running, gets a bus slot of size 10 processor cycles periodically

assigned to it every 20th cycle. In this particular example, a cache miss takes

10 cycles for the bus to transfer, resulting in the bus being granted to Core 1

only at times t satisfying t ≡ 0 (mod 20), where ≡ is the congruence operator.

Let us denote the worst-case start time of a basic block Z by s(Z), and

the end time in the worst case by e(Z). The execution time of a basic block

Z, with respect to the worst-case start time, is then defined as w(Z) =

e(Z) − s(Z). Without considering bus conflicts, as in traditional methods,

the worst-case execution time of the basic blocks would be wtrad(B) =

27, wtrad(C) = 32, wtrad(E) = 19, wtrad(F) = 18 and wtrad(H) = 15. The

corresponding worst-case program path becomes C, E, E, E, H resulting in a

worst-case execution time of 27+19·3+15 = 104 clock cycles. However, this

assumes that all cache misses take the same amount of time to transfer, and

this is false in a multi-core system with a shared communication structure. In

a TDMA-based approach, the execution time of a basic block depends on its

start time in relation to the bus schedule. We can start from the root node and

successively calculate the execution time of each basic block with respect to

the worst-case start time. At the same time, the worst-case path is calculated.

With respect to the TDMA schedule in Figure 3.12, the worst-case start

times of the basic blocks connected directly to the root node is 0, since they

will never execute at any other time instant. The execution time of block B, in

the worst case, is w(B) = 0+10+2+18+5 = 35 whereas the corresponding

execution time of block C is w(C) = 0 + 10 + 9 + 11 + 3 = 33. Note that

w(B) > w(C), even though the relation is the opposite in the traditional

case above where wtrad(B) < wtrad(C). In order to decide which one of

these two basic blocks is on the critical path, two very important observations

must be made based on the predictable nature of the TDMA bus (and the

compositionality considered in this section).

1. The absolute end time of a basic block can never increase by letting

it start earlier. That is, considering a basic block Z with s(Z) = x

and e(Z) = y, any start time x′ < x will result in an end time y′ ≤

y. The execution time of the particular basic block can increase, but

the increment can never exceed the difference x − x′ in start time.

246 WCET analysis for multi-core platforms

This means that a basic block Z will never end later than e(Z), as

long as it start before (or at) s(Z). This guarantees that the worst-case

calculations will never be violated, no matter what program path is

taken. Note that w(Z) is the execution time in the worst case, with

respect to e(Z), and that the time spent by executing Z can be greater

than w(Z) for an earlier start time than s(Z).

2. Consider a basic block Z with worst-case start time s(Z) = x and

worst-case end time e(Z) = y. If we, instead, assume a worst-case

start time of s(Z) = x′′ where x′′ > x, the corresponding resulting

absolute end time e(Z) = y′′ will always satisfy the relation y′′ ≥ y.

This means that the greatest assumed worst-case start time s(Z) will

also result in the greatest absolute end time e(Z).

Based on the second observation, we can be sure that the maximum absolute

end time for the basic block (E, F or H) succeeding B and C will be found

when the worst-case start time is set to 35 rather than 33. Therefore, we con-

clude that B is on the worst-case program path and, since they are not part of

a loop, B and C do not have to be investigated again.

Next follow three choices. We can enter the loop by executing either E

or F, or we can go directly to H and end the task immediately. Due to ob-

servation 2 above, we can conclude that the worst-case absolute end time of

H, and thus the entire task, will be achieved when the loop iterates the maxi-

mum possible number of times, which is 3 iterations, since that will maximize

s(H). Therefore, the next step is to calculate the worst-case execution time

for basic blocks E and F respectively for each of the three iterations, before

finally calculating the worst-case execution time of H. In the first iteration,

the worst-case start time is s(E1) = s(F1) = 35 and the execution times be-

come w(E1) = 0 + 15 + 9 = 24 and w(F1) = 7 + 28 + 1 = 36 for E and F

respectively. We conclude that the worst-case program path so far is B, F and

the new start time is set to s(E2) = s(F2) = 35+36 = 71. In the second loop

iteration, we get w(E2) = 0 + 19 + 9 = 28 and w(F2) = 7 + 12 + 1 = 20.

Hence, in this iteration, E contributes to the worst-case program path and

the new worst-case start time becomes s(E3) = s(F3) = 99. In the fi-

nal iteration, the execution times are w(E3) = 0 + 11 + 9 = 20 and

w(F3) = 7 + 24 + 1 = 32 respectively, resulting in the new worst-case

start time s(H) = 131. We now know that the worst-case program path is

3.2. Modeling shared buses 247

B, F, E, F, H, and since H contains no cache misses, and therefore always

takes 15 cycles to execute, the WCET of the entire task is e(H) = 146.

As shown in this example, in a loop-free control flow graph, each basic

block has to be visited once. For control flow graphs containing loops, the

number of investigations will be the same as for the case where all loops are

unrolled according to their respective loop bounds.

3.2.4 Modeling both shared caches and shared buses

In the previous section, we have described the modeling of shared buses in

isolation. In general, there might exist complex timing interactions between

shared caches and shared buses. Such interactions may affect the overall

schedulability analysis. Therefore, to accurately model the timing behavior

in a multi-core system, it is critical to consider both shared caches and shared

buses. In the following, we shall first give an overview of an integrated anal-

ysis framework which considers both shared caches and shared buses (previ-

ously proposed in [22]). We shall then illustrate the workflow of this analysis

framework through an example. Also, in this section, we shall assume a com-

positional architecture (as explained in Section 2.1.2). As a result, the worst

case memory latency (including bus delay) for each memory access instruc-

tion can simply be added to obtain the overall worst case memory latency.

Integrated analysis framework

The analysis framework in the presence of shared cache and bus in multi-

core platforms appears in Figure 3.13. Such a framework estimates the worst

case response time (WCRT) of an application containing several tasks. The

application is captured by a set of task graphs. Each task graph is a directed

acyclic graph containing a number of tasks. Each node in a task graph cap-

tures a specific task. Besides, a directed edge between task Ti and task Tj

captures that task Tj can start only after task Ti finishes execution. In our dis-

cussion, task graphs are only used to show the dependency between shared

cache and shared bus analyses. We only describe non-preemptive system.

For preemptive systems, additional challenges, such as estimating the cache

related preemption delay (CRPD) [6], need to be handled. Analysis of pre-

emptive multi-tasking systems is also an active research topic, however, it is

248 WCET analysis for multi-core platforms

L1 cache
analysis

L2 cache
analysis

Cache access
classification

L1 cache
analysis

L2 cache
analysis

L2 conflict
analysis

Bus-aware
WCET/BCET
computation

WCRT
computation

Interference
changes ? Yes

Initial interference

Modified
interference

Estimated

WCRT

No

Cache access
classification

Micro-architectural
modeling

Figure 3.13: Iterative analysis framework

somewhat outside the scope of this monograph. Therefore, interested read-

ers are referred to [6] and related literature. L1 cache analysis proceeds in-

dependently for each core. The memory accesses that are guaranteed to be

L1 cache hits are eliminated from further consideration at this point. The

remaining memory accesses (guaranteed / probable L1 misses) can be trans-

mitted via the bus and are considered for shared cache and bus analysis. Note

that all cache analyses are performed as part of micro-architectural modeling

(cf. Figure 2.1). For compositional architectures, worst case memory latency

(including bus delay) can be computed during the WCET calculation phase

(by traversing the program’s control flow graph, as also explained in Section

3.2.3).

Clearly, the bus analysis requires the time at which the L1 cache misses

appear on the bus. However, the bus access time of an L1 cache miss is af-

fected by the execution time of the preceding memory accesses in the same

core. This, in turn, is determined by the shared L2 hit/miss categorization of

3.2. Modeling shared buses 249

the preceding memory accesses. On the other hand, the shared L2 cache con-

flict analysis determines the memory blocks that may get evicted by memory

blocks from other core. Whether a memory block M1 belonging to task T1

can be evicted from the shared cache by a memory block M2 from task T2

depends on whether the lifetime of the two tasks can overlap or not. The task

lifetime, in turn, is determined by the shared bus analysis results.

This circular dependency between the bus and cache analysis requires us

to develop an iterative analysis framework as shown in Figure 3.13. In the

first iteration, the analysis of shared L2 cache assumes that a task on one core

can conflict with all the tasks in other cores. Based on this pessimistic L2

cache analysis results, we can estimate the shared bus access time and hence

the WCET of the different tasks. These numbers are fed to the WCRT anal-

ysis component that estimates the worst-case response time of the complete

application by taking into account the dependencies among the tasks. A by-

product of the WCRT analysis framework is the lifetime of each task. These

lifetime estimates are used to eliminate interference among tasks with dis-

joint lifetimes. If the interference pattern has changed (i.e., we have managed

to eliminate some interferences), the shared L2 cache analysis has to be re-

peated. It can be formally proved that such an analysis monotonically reduces

the task interferences across iterations, and hence is guaranteed to terminate.

Illustrative Example We now show the working of the analysis using the

example in Figure 3.14(a). We assume a 2-core system where the task graph

containing tasks T1 and T2 is running on core 0 and task graph containing

tasks T3 and T4 is running on core 1. For simplicity of exposition, we shall

assume in this example that the best-case and the worst-case execution times

of any task are the same. T1.1, T2.1, . . . , T4.2 represent the memory blocks

within the tasks. Each memory block is annotated with the required com-

putation cycles excluding the memory/bus latency. Only the memory blocks

marked in black are the ones with guaranteed or possible L1 cache miss as

determined by per-core L1 cache analysis. An initial L2 cache analysis is per-

formed for each core individually that ignores conflicts from other cores. This

per-core L2 cache analysis determines all the memory blocks (T1.2, T2.2,

and T4.2) as guaranteed L2 cache hits. Let us also assume that the L2 cache

hit latency is 10 cycles, whereas L2 cache miss latency is 20 cycles. Further,

250 WCET analysis for multi-core platforms

T2.1= 10

Core 0Core 1

L2 Hit: 10 cycles

L2 Miss: 20 cycles

M2.2 and M3.2 conflict in L2:

Both L2 Miss

M4.2 is L2 Hit

T1.1= 90T3.1= 20

T4.1= 20

T3.2=10

T2.2=20T4.2=10

T1.1=20

T2.1

=20

T2.2 =10

Core 1 Core 0 Bus

 Wait

 Wait

T3.1=90

T4.1= 10

T4

lifetime

T1

lifetime

Bus schedule based on M1.2, M4.2 L2 miss

WCRT: 170 cycles

T1 and T4 have Disjoint lifetime

M1.2 and M4.2 cannot conflict: Both L2 Hit

Core1

slot

Core0

slot

Core1

slot

Core0

slot

M4.2=20

M1.2 =20

T4.2=20

M2.2 = 10

T1.2 = 10

T3.1=90

T1.1=20

T4.2 =20

T1.2=10

T4.1= 10

T2.1=20

T2.2=10 M4.2=10

M1.2=10

M2.2=10

Core 1 Core 0 Bus

 Wait

Core1

slot

Core0

slot

Core1

slot

Core0

slot

Bus schedule based on M1.2, M4.2 L2 Hit

Second bus wait for Core 0 eliminated

WCRT: 130 cycles

(a) (b) (c)

Figure 3.14: Example to show dependency between cache and bus analysis, annotations of

the form T x.y capture different memory blocks accessed by task T x. The quantitative value

beside each annotation T x.y captures the computation cycle excluding the memory/bus la-

tency. A bus transaction (if required) for a memory block T x.y is captured by the annotation

Mx.y. The memory blocks colored in black (e.g. T 2.2) capture potential L1 cache misses and

hence, accessing the shared bus

the TDMA bus scheduler assigns a 50 cycle bus slot to each core and the

first bus slot goes to core 0. In this example, to demonstrate the dependency

between shared cache and bus analysis, we ignore any cold cache misses.

However, the analysis does not rely on this assumption and it can accurately

model the additional cycles due to cache misses if some memory blocks have

to be loaded into the cache for the very first time.

Now we proceed to the analysis of the shared L2 cache. At this point, we

have no information about task lifetimes. So we assume any task on core 0

can conflict with all the other tasks on core 1 and vice versa. Memory block

T1.2 and T4.2 map to the same L2 cache block and therefore they conflict

with each other. So we have to conservatively assume that both of them will

be L2 cache misses in the worst case, whereas T2.2 remains as L2 cache hit

because it does not conflict with any memory block from core 0. Note that,

3.2. Modeling shared buses 251

even though any task on core 0 can conflict with all the other tasks on core 1

and vice versa, memory block T2.2 may not conflict with T4.2 since it maps

to a different cache block in the shared L2 cache.

After shared L2 cache analysis, we proceed to shared bus analysis. The

result of the analysis can be visualized in Figure 3.14(b). In Figure 3.14, a

memory transaction corresponding to the L1 cache miss of memory block

Px.y is denoted by Mx.y. Notice that all L2 cache accesses (whether hit or

miss) are transmitted on the shared bus. An L2 cache access from core i has

to wait for core i to get access to the bus. The L1 cache miss M4.2 in core 1

occurs at time 100. From the bus schedule, we can observe that the slot be-

ginning at time 100 belongs to core 1. Thus M4.2 does not encounter any

additional waiting time to acquire the shared bus and is completed by time

120. Thus, T4 finishes at time 140. However, the L2 cache miss M1.2 in

core 0 happens at time 20 and the bus slot from time 0 to time 50 is allotted to

core 1. Hence, M1.2 encounters an additional 30 cycles waiting time to ac-

quire the bus and eventually the memory transaction corresponding to M1.2

completes at time 70. This makes task T1 to finish at time 80. Similarly, the

L2 cache hit M2.2 in core 0 occurs at time 100 and the bus slot from time

100 to time 150 is allotted to core 1. Thus M2.2 encounters an additional

50 cycles waiting time and eventually the task graph running on core 0 is

completed at time 170. Hence, the WCRT of the application according to this

schedule is 170 cycles.

However, as a by-product of the WCRT analysis, we note that task T1 and

T4 have disjoint lifetimes. So memory blocks T1.2 and T4.2 cannot conflict

with each other in the shared L2 cache and they remain as L2 cache hits

as determined by per-core L2 cache analysis. As L2 cache hits have shorter

latency, the bus analysis needs to be re-done. The revised schedule is shown

in Figure 3.14(c). Task graph running on core 1 finishes at time 130 because

M4.2 is now an L2 cache hit. Due to the earlier completion of M1.2 (because

of L2 hit), L2 cache hit M2.2 occurs at time 90. Since L2 cache hit latency

is 10 cycles, M2.2 can be serviced in the remaining bus slot belonging to

core 0 (i.e., the bus slot from time 90 to time 100) and therefore making T2

finish by time 110. Hence, this new analysis results in a much tighter WCRT

estimate as the second wait time for the bus in core 0 is now eliminated. The

WCRT at this point changes to 130 cycles. This example illustrates how an

252 WCET analysis for multi-core platforms

iterative shared cache and bus analysis can obtain tight WCRT estimates for

embedded real-time applications.

Bus-aware WCET analysis without loop unrolling

In this section, we shall describe a different TDMA bus analysis technique

which avoids the problem of loop unrolling for the analysis proposed in Sec-

tion 3.2.3. Such an analysis is very efficient, however, the efficiency comes at

a cost of analysis precision.

Recall that L1 cache misses are transmitted via the bus to access the

shared L2 cache. Classical WCET analysis can compute the WCET of a pro-

gram by taking into account only the number of worst case cache misses. The

exact time-stamps of the cache misses (the time at which the cache misses

occur) are not required for WCET computation. In presence of a shared bus,

a cache miss encounters variable amount of delay due to the waiting time

elapsed to acquire the bus-slot for the corresponding core. One naive ap-

proach is to always consider the maximum possible waiting time for each

memory reference that may potentially access the shared bus. In that case,

the effect of shared bus in WCET analysis can be ignored at the cost of ob-

taining highly over-estimated WCET values.

For the sake of simplicity in the following discussion, we shall assume

that each core has been assigned the same slot length in a given bus sched-

ule. For variable length slots, the following analysis methodology remains

unchanged. However, all the equations in the rest of the section will become

substantially more complex. Therefore, to convey the overall idea, we shall

restrict our following description for a simplified bus schedule which assigns

bus slots of the same length to each core. We shall discuss the optimization

of more complex TDMA schedules (with variable slot lengths) in section 4.

Formally, one can capture the bus schedule by the following mathematical

relation:

CS
(i)
k = Ak + B · i (3.2)

where CS
(i)
k is the starting time of the bus schedule assigned to k-th core

in i-th round, B = C × Sl, C being the total number of cores, Sl is the slot

length assigned to each core and Ak is the starting time of the very first slot

in the bus schedule assigned to k-th core.

3.2. Modeling shared buses 253

C6= 10

C4 = 10

C5 = 10

M5= 10

Right Branch

Align

C8 = 10

C2= 30

C1=20

C3= 20

C8= 10

M7=20

M3= 10

C1=20

C7=30

t=0

t=50

t=100

t=150

t=200

Core0

Bus slot

Core0

Bus slot

L2 Hit L2 Hit

L2 Miss

C1= 20

C7= 30

Common Path Left Branch

Bus slot: 50 cycles, L2 hit: 10 cycles,

L2 miss: 20 cycles,

C1,C2, …. ,C8 are ŵeŵory ďloĐks iŶside loop

Code Executing on Core0

Core0

Bus slot

C2= 30

C3= 20 C5= 10

C4= 10

C6= 10

(a)

C2=10

C1=10 L2 Hit

C2=10

M1=10

C1=10

C2=10

M1=10

C1=10

C2=10

M1=10

C1=10

C2=10

M1=10

C1=10

t=0

t=100

Core0

Bus slot

No unrolling Partial unrolling

Iter1

Iter2

Iter3

Iter1

Iter2 Iter4 Core0

Bus slot

Code Executing

on Core0

M1=10 M1=10

(b)

Figure 3.15: (a) An example of loop analysis, annotations of the form Cx capture different

memory blocks accessed by the running task. The quantitative value beside each annotation

Cx captures the required computation cycles excluding the memory/bus latency. A bus trans-

action (if required) for a memory block Cx is captured by the annotation Mx. The memory

blocks colored in black (e.g. C3) capture potential L1 cache misses and hence, accessing the

shared bus (b) Limited loop unrolling with low cost

254 WCET analysis for multi-core platforms

At first we discuss the WCET computation of a single loop (no nesting)

and later we extend it to a full program. Analysis of loops is depicted by

an example in Figure 3.15(a). The bus slot is 50 cycles. Let us also assume

that L2 cache hit latency is 10 cycles, whereas L2 cache miss latency is 20

cycles. Only the memory blocks marked in black denote L1 cache misses and

hence will be transmitted via the bus. The loop starts at 0 time. Following

this assumption, L1 cache miss M3 occurs at time 50. Since the next bus slot

for Core0 starts only at time 100, this L2 cache access is delayed till time

100. Thus the total time encountered for M3 access becomes 60 cycles —

50 cycles to wait for the bus and 10 cycles to get the instruction from L2

cache. On the other hand, L1 cache miss M5 starts at time 30, when the bus

is still available to Core0. As a result, M5 does not suffer any delay to access

the bus. Worst case starting time of the loop sink node is at time 130. Once

again, due to the availability of the bus, L2 cache miss M7 can be served

immediately. Finally the computation of loop sink node ends at time 190.

Since we always assume a loop iteration starts from the beginning of a bus

slot of Core0, an alignment cost of 10 cycles is added to the total cost of one

iteration. Assuming loop bound to be 5, overall WCET of the loop becomes

(5 ∗ (190 + 10) + 100) = 1100 cycles (additional 100 cycles were added for

aligning the first iteration of the loop, since the time between the beginning

of any two consecutive bus slots allotted to the same core is 100 cycles). Note

that, an L1 cache miss, occurred earlier than the time predicted in the worst-

case, is served by an earlier bus slot than the bus slot predicted in the worst-

case analysis (as also explained in Section 3.2.3). This nice property is crucial

for compositional architectures (cf. Section 2.1.2). Due to this property, the

worst case starting time of each L1 cache miss can be taken into account for

a sound WCET computation.

Formally, WCET computation of a loop is described in Algorithm 3.2.

startbi
and finishbi

keep track of the worst-case starting and finishing time

of basic block bi respectively. cost stores the worst-case cost of basic block

bi while bi is being processed. finishbi
is computed by adding the value of

cost to startbi
(line 25). The header node of the loop always starts from time

0 (line 5). Worst case starting time of any basic block (other than the header

node) is the maximum of all of its predecessors’ finishing time (line 8). For

3.2. Modeling shared buses 255

Algorithm 3.2 WCET computation of a loop lp; B is the interval between

two consecutive bus slots assigned to a core

1. costiter := 0;

2. for (all blocks bi of loop lp in topological order) do

3. cost := 0;

4. if (bi is the header node of loop lp) then

5. startbi
:= 0; /* assume loop header node starts at time 0 */

6. else

7. find the predecessor pmax of bi having maximum finish time (finishpmax
);

8. startbi
:= finishpmax

;

9. end if

10. inst := first instruction in basic block bi;

11. repeat

12. if (inst is an L1 cache hit) then

13. cost := cost + L1lat; /* L1lat : L1 cache hit latency */

14. else

15. ∆ := (startbi
+ cost);

16. cost := cost + Wait(∆) + LAT ;

17. end if

18. inst := next instruction in basic block bi;

19. until (all instructions in basic block bi finish)

20. if (bi is the sink node of loop lp) then

21. ∆ := (startbi
+ cost);

22. cost := cost + AlignCost(∆);

23. costiter := (startbi
+ cost);

24. end if

25. finishbi
:= startbi

+ cost; /* finish time of bi */

26. end for

27. return costiter × N + B;

an L1 cache miss, function Wait computes the worst-case additional delay for

accessing the shared bus (line 16).

Wait(∆) =

0, if (⌊∆
B

⌋ × B + Sl − LAT) ≥ ∆;

(⌊∆
B

⌋ + 1) × B − ∆, otherwise.

Here ∆ is the timepoint where the shared bus is accessed. Sl is the bus slot

length assigned to each core. LAT is equal to the fixed L2 cache hit latency

in case of an L2 cache hit and it is equal to main memory latency in case of

256 WCET analysis for multi-core platforms

an L2 cache miss. The term ⌊∆
B

⌋ represents the number of full bus schedules

(whose length is equal to B) expired in time ∆. Therefore, ⌊∆
B

⌋×B represents

the starting time of the latest bus slot assigned to the core within time ∆. The

end time of this latest slot is at time ⌊∆
B

⌋ × B + Sl. To complete the L1 cache

miss occurred at time ∆, it must be the case that ⌊∆
B

⌋ × B + Sl ≥ ∆ + LAT ,

which is precisely the first condition of Wait function. If the L1 cache miss

at current time cannot be served in the latest bus slot, it is delayed till the

next bus slot. Clearly, the next bus slot starts at time (⌊∆
B

⌋ + 1) × B. Thus

(⌊∆
B

⌋ + 1) × B − ∆ precisely captures the waiting time to acquire this next

bus slot. After computing the worst-case cost of one iteration of the loop,

the additional cost to align the next iteration to the starting of a bus slot is

added to the WCET (by the AlignCost function) (line 22). AlignCost function

is similar to the Wait function and is described as follows.

AlignCost(∆) =

0, if (∆ mod B) = 0;

(⌊ ∆

B
⌋ + 1) × B − ∆, otherwise.

Thus, if ∆ is already aligned with the beginning of a bus slot alloted to the

core, alignment cost is 0. Otherwise, alignment cost is equal to shift the time-

line to the beginning of the nearest bus slot alloted to the core. By adding

AlignCost(∆) we get costiter, the worst-case cost of one loop iteration.

Since we do not know the exact starting time of the loop, for the very first

iteration, the maximum alignment cost needs to be added (which is equal to

B). Hence, the WCET of the loop is computed as costiter × N + B, where

N is the loop bound.

There is a special case when the worst-case cost of one loop iteration is

much smaller than the bus slot length. In that case, due to the alignment to

the beginning of a bus slot after one iteration, overestimation in WCET may

increase significantly. Such loops can be partially unrolled so that worst-case

cost of a single iteration of the unrolled loop exceeds one single bus slot. This

situation is illustrated in Figure 3.15(b). The loop is unrolled three times as

L1 cache misses (M1) from three consecutive iterations can be serviced in a

single bus slot.

Extension to full program So far, we have only discussed the WCET com-

putation of a single loop. To extend the analysis to whole programs, the pro-

gram’s control flow graph is transformed by converting each innermost loop

3.2. Modeling shared buses 257

to a single “basic block". The cost of each innermost loop is given by the

pre-computed WCET. Using the innermost loop’s WCET, we get the WCET

of loops at the next level of nesting. In this way, we can get WCETs of all

the outermost loops in a program. The program can now be viewed as a DAG

with all outermost loops converted to single basic blocks. Algorithm 3.2 can

again be used to compute the WCET of the program with zero alignment

cost. For programs containing procedure calls, the extension is straightfor-

ward. For each call instruction, the cost of the callee can be computed as

mentioned above and will be added to the total cost of the corresponding ba-

sic block. This analysis is also context sensitive, i.e., procedure calls at differ-

ent call sites are analyzed separately. Specifically, the cache analysis module

can handle different contexts of a loop (i.e., Virtual Inlining and Virtual Un-

rolling (VIVU) approach [80]) and thus the shared bus analysis indeed can

model different contexts of a loop. However, for the sake of simplicity, we

restrict our description for the WCET analysis of a loop in a single context.

WCRT estimation

In order to compute the WCRT of a task graph, we need to know the time in-

terval of each task. The task ordering is imposed by the partial ordering given

in the corresponding task graph. We use four variables EarliestReady(t),

LatestReady(t), EarliestFinish(t), and LatestFinish(t) to represent the exe-

cution time information of a task t. For any task t, the earliest (latest) time

when all of t’s predecessors in the task graph have completed execution, is

represented by EarliestReady(t) (LatestReady(t)). Similarly, the earliest (lat-

est) time when task t finishes execution, is represented by EarliestFinish(t)

(LatestFinish(t)). Given a task t, its execution interval is EarliestReady(t) to

LatestFinish(t).

In this discussion, we consider a non-preemptive system. Let us assume

that WCET(t) and BCET(t) denote the worst-case execution time (WCET) and

best-case execution time (BCET) of task t, respectively. For BCET computa-

tion, all NC classified instructions in L1 cache are considered to be L1 cache

hit and all instructions that are AM classified in L1 cache and NC classified

in shared L2 cache are considered to be shared L2 cache hit. BCET of all

the tasks are computed after the shared L2 cache analysis. A task t can be

ready only after all its predecessors Pred(t) in the task graph finish execu-

258 WCET analysis for multi-core platforms

tion. Therefore, the following two equations can capture the computation of

Earliestfinish(t) and EarliestReady(t):

EarliestF inish(t) = EarliestReady(t) + BCET (t)

EarliestReady(t) = max
u∈P red(t)

EarliestF inish(u)

For a task t without any predecessor EarliestReady(t)=0. However, the latest

finish time of a task is not only affected by its predecessors but also by the

set of tasks running on the same core whose execution intervals may overlap

(called peers) [56]. Let us call the set of tasks overlapping with t, and running

on the same core by ℜt
peers. Since the WCET analysis assumes that the tasks

are aligned to the beginning of a bus slot, during LatestFinish time computa-

tion, this alignment cost needs to be considered. In the worst case, all of the

peers of a task and the task itself may encounter the maximum alignment cost

(equals B). Thus the LatestFinish time is defined as follows:

LatestF inish(t) = LatestReady(t) + WCET (t)

+
∑

tc∈ℜt
peers

WCET (tc)

+ (|ℜt
peers| + 1) × B

Here |ℜt
peers| captures the number of peers of task t. Intuitively, the term

(|ℜt
peers| + 1) × B captures the worst-case cost for a task t to be aligned to

the beginning of a bus slot assigned to it. However, it is worthwhile to note

that the WCRT computation is sound even in scenarios where tasks do not

start at the boundary of a bus slot. The additional cost (|ℜt
peers| + 1) × B is

added only to perform the underlying WCET analysis in a simplified fashion

(as described in Section 3.2.4).

It is important to note that the computed WCET and BCET already takes

into account the shared cache interferences. These shared cache interferences

are iteratively refined, as shown in Figure 3.13. Finally, for a given iteration

in Figure 3.13, WCRT of an application is defined as follows:

WCRT = maxt(LatestF inish(t))

− mint(EarliestReady(t))

that is, the duration from the earliest start time of any task to the latest com-

pletion time of any task.

3.3. Modeling timing interactions 259

The iterative refinement of WCRT, as shown in Figure 3.13 works as fol-

lows. Initially a task t′ cannot overlap (that is, interfere) with a task t if and

only if (i) task t′ depends on t and vice versa by the partial order imposed

from the task graph or (ii) t and t′ execute on the same core (by virtue of non-

preemptive execution). After the WCRT analysis, new interference informa-

tion is generated if two independent tasks which accounted for shared cache

conflicts in the cache analysis are found to have non-overlapping lifetimes,

that is, their [EarliestReady(t),LatestFinish(t)] intervals do not overlap. This

new interference information is again fed to the shared cache conflict analysis

module which may further tighten several tasks’ WCET in presence of shared

bus. This process continues until the interference among all the tasks stabi-

lizes. The following two properties ensure that this WCRT analysis always

terminates.

Property 3.2.4.1. For any task t, its EarliestReady(t) and BCET do not

change across different iterations of L2 cache conflict and WCRT analysis.

Property 3.2.4.2. Task interferences monotonically decrease (strictly de-

crease or remain the same) across different iterations of the analysis frame-

work (Figure 3.13).

3.2.5 Discussion

The analysis of buses described in 3.2.3 might be expensive in the presence of

nested loops. This is due to virtual loop unrolling. The bus analysis described

in 3.2.4 solves this problem by aligning loop iterations with bus schedules.

However, such an efficiency in the analysis comes at a cost of reduced analy-

sis precision. The work in [48] proposes an efficient TDMA-based bus analy-

sis technique which avoids the problem of full loop unrolling, but it is almost

as precise as the analysis described in Section 3.2.3. The analysis time in [48]

significantly improves over the analysis time with full loop unrolling. For

details, readers are referred to [48].

3.3 Modeling timing interactions

In the preceding discussion, we have described recent efforts in building tim-

ing models for shared caches and shared buses. We have also shown the ex-

istence of complex timing interactions between shared caches and buses and

260 WCET analysis for multi-core platforms

effective ways to model such interactions. However, such solutions, as de-

scribed in the preceding sections, have two important shortcomings as fol-

lows:

• They do not model timing interactions between shared resources and

the rest of the micro-architecture (e.g. pipeline and branch prediction).

• They do not provide a full-fledged solution for architectures that may

exhibit timing anomaly [59] (i.e. non-compositional architectures).

In this section, we shall describe a unified WCET analysis framework (the

content has partially been published in [18] before) that solves the problems

mentioned above.

3.3.1 Background

In this section, we introduce the background behind this unified WCET anal-

ysis framework. This WCET analysis framework for multi-core is based on

the pipeline modeling of [54].

Pipeline modeling through execution graphs The central idea of

pipeline modeling revolves around the concept of the execution graph [54].

The execution graph is constructed for each basic block in the program con-

trol flow graph (CFG). For each instruction in the basic block, the corre-

sponding execution graph contains a node for each of the pipeline stages. We

assume a five stage pipeline — instruction fetch (IF), decode (ID), execu-

tion (EX), write back (WB) and commit (CM). Edges in the execution graph

capture the dependencies among pipeline stages; either due to resource con-

straints (instruction fetch queue size, reorder buffer size etc.) or due to data

dependency (read after write hazard). The timing of each node in the execu-

tion graph is represented by an interval, which covers all possible latencies

suffered by the corresponding pipeline stage.

Figure 3.16 shows a snippet of assembly code and the corresponding ex-

ecution graph. The example assumes a 2-way superscalar processor with 2-

entry instruction fetch queue (IFQ) and 4-entry reorder buffer (ROB). Since

the processor is a 2-way superscalar, instruction I3 cannot be fetched before

the fetch of I1 finishes. This explains the edge between IF nodes of I1 and I3.

3.3. Modeling timing interactions 261

IF

IF

IF

IF

IF

ID

ID

ID

ID

ID

EX

EX

EX

EX

EX

WB

WB

WB

WB

WB

CM

CM

CM

CM

CM

I2

I1

I3

I4

I5

mult r1 r7 r8

mult r1 r2 r3

add r2 r1 r2

add r9 r1 r6

I1:

I2:

I3:

I4:

I5:

add r4 r5 r6

Figure 3.16: Execution graph for the example program in a 2-way superscalar processor with

2-entry instruction fetch queue and 4-entry reorder buffer. Solid edges show the dependency

between pipeline stages, whereas the dotted edges show the contention relation

On the other hand, since IFQ size is 2, IF stage of I3 cannot start before ID

stage of I1 finishes (edge between ID stage of I1 and IF stage of I3). Note that

I3 is data dependent on I1 and similarly, I5 is data dependent on I4. There-

fore, we have edges from WB stage of I1 to EX stage of I3 and also from WB

stage of I4 to EX stage of I5. Finally, as ROB size is 4, I1 must be removed

from ROB (i.e. committed) before I5 can be decoded. This explains the edge

from CM stage of I1 to ID stage of I5.

A dotted edge in the execution graph (e.g. the edge between EX stage

of I2 and I4) represents contention relation (i.e. a pair of instructions which

may contend for the same functional unit). Since I2 and I4 may contend for

the same functional unit (multiplier), they might delay each other due to con-

tention. The pipeline analysis is iterative. Analysis starts without any timing

information and assumes that all pairs of instructions which use same func-

tional units and can coexist in the pipeline, may contend with each other.

In the example, therefore, the analysis starts with {(I2,I3), (I2,I5), (I1,I4),

(I3,I5)} in the contention relation. After one iteration, the timing information

of each pipeline stage is obtained and the analysis may rule out some pairs

from the contention relation if their timing intervals do not overlap. With

this updated contention relation, the analysis is repeated and subsequently,

a refined timing information is obtained for each pipeline stage. Analysis is

terminated when no further elements can be removed from the contention

262 WCET analysis for multi-core platforms

relation. The WCET of the code snippet is then given by the worst case com-

pletion time of the CM node for I5.

3.3.2 Overview of the WCET analysis framework

Figure 3.17 gives an overview of the WCET analysis framework. Each pro-

cessor core is analyzed, at a time, by taking care of the inter-core conflicts

generated by all other cores. Figure 3.17 shows the analysis flow for some

program A running on a dedicated processor core. Specifically, Figure 3.17

captures the instantiation of the general WCET analysis framework (dis-

cussed in Figure 2.1) for multi-core platforms. Basic analysis of caches is

performed using the technique described in Section 3.1.2. However, to model

the interaction between caches and branch predictor, L1 and L2 cache analy-

sis has to consider the effect of speculative execution when a branch instruc-

tion is mispredicted (refer to Section 3.3.9 for details). Similarly, the timing

effects generated by the mispredicted instructions are also taken into account

during the iterative pipeline modeling (refer to [54] for details). The shared

bus analysis computes the bus context under which an instruction can exe-

cute. The outcome of cache analysis and shared bus analysis is used to com-

pute the latency of different pipeline stages during the analysis of the pipeline

(refer to Section 3.3.4 for details). Pipeline modeling is iterative and it finally

computes the WCET of each basic block. WCET of the entire program is

formulated as maximizing the objective function of a single integer linear

program (ILP). WCETs of individual basic blocks are used to construct the

objective function of the formulated ILP. The constraints of the ILP are gen-

erated from the structure of the program’s control flow graph (CFG), micro-

architectural modeling (branch predictor and shared bus) and additional user-

given constraints (e.g. loop bounds). The modeling of the branch predictor

generates constraints to bound the execution count of mispredicted branches

(for details refer to [53]). On the other hand, constraints generated for bus

contexts bound the execution count of a basic block under different bus con-

texts (for details, refer to Section 3.3.7). Path analysis finds the longest feasi-

ble program path from the formulated ILP through implicit path enumeration

(IPET). Any ILP solver (e.g. CPLEX) can be used for deriving the whole

program’s WCET via IPET.

3.3. Modeling timing interactions 263

on different cores

Program running

Program A

binary

basic blocks

L1 cache

analysis

conflicts

Inter−core
cache

L2 cache

analysis

modeling

Pipeline

Branch predictor

modeling

Branch predictor
Speculative
execution

of WCET

constraints

analysis

Shared bus

Bus context
constraints

User
constraints

CFG
flow

constraints

WCET of

A

Micro−architectural modeling

CFG

calculation

WCET

via ILP

Figure 3.17: Instantiation of the WCET analysis framework shown in Figure 2.1 for multi-

core platforms

System and application model We assume a multi-core processor as

described in section 2. Therefore, each core has a private L1 cache. Addition-

ally, multiple cores share an L2 cache. The extension of this framework for

more than two levels of caches is straightforward. If a memory block is not

found in L1 or L2 cache, it has to be fetched from the main memory. Any

memory transaction to L2 cache or main memory has to go through a shared

bus. For shared bus, we assume a TDMA-based arbitration policy (similar

to the discussion in section 3), where a fixed length bus slot is assigned to

each core. We also assume fully separated caches and buses for instruction

and data memory. Therefore, the data references do not interfere with the in-

struction references. Besides, we primarily discuss the effect of instruction

caches. The extension for data caches are discussed in Section 3.6. Since we

discuss only instruction caches, the cache miss penalty (computed from cache

analysis) directly affects the instruction fetch (IF) stage of the pipeline. We

also do not discuss the modeling of data prefetching units, which are usually

available in modern processors. Therefore, we assume that the data prefetch-

ing units are disabled to improve timing predictability. We do not discuss self

modifying code and therefore, we do not discuss the modeling of coherence

traffic. Finally, we begin our discussion with least-recently-used (LRU) cache

replacement policy and non-inclusive caches only. Later in Section 3.3.11, we

264 WCET analysis for multi-core platforms

Algorithm 3.3 Outline of WCET analysis

1. Unroll each loop once to distinguish the execution context at first iteration

2. Perform analysis of caches via abstract interpretation

3. for (each basic block B in topological order) do

4. Model interaction of caches with pipeline stages (cf. Section 3.3.5)

5. Model interaction of shared buses with pipeline stages (cf. Section 3.3.6)

6. Model pipeline delays using iterative analysis (cf. Section 3.3.1)

7. if (B is the header node of loop L) then

8. Update flow graph GL to add the bus context at the entry of L (cf. Section

3.3.4)

9. end if

10. if (B is the sink node of some loop L) then

11. Reevaluate the bus context OL at the entry of L
12. if (OL does not exist in GL) then

13. Repeat from 5 in topological order for all basic blocks enclosed by L
14. else

15. update GL to reflect the transition to bus context OL

16. end if

17. end if

18. end for

19. Generate ILP constraints to predict the number of mispredicted branches

20. Generate ILP constraints from all flow graphs GL for all loops L (cf. Section

3.3.4)

21. Generate CFG flow constraints to capture the structure of CFG

22. Solve the ILP problem to get the WCET (cf. Section 3.3.10)

discuss the extension of the framework for other cache replacement policies

(e.g. FIFO and PLRU) and other cache hierarchies (e.g. inclusive).

In the following section, we shall first give an outline of the WCET anal-

ysis process. Subsequently, we shall describe the timing interaction of shared

resources with pipeline. Specifically, we shall first describe such timing in-

teractions within a single basic block. In next sections, this basic-block level

analysis will be lifted to handle complex program flow structures, such as

branches and loops.

3.3.3 Outline of WCET analysis algorithm

Algorithm 3.3 outlines the overall WCET analysis process. As discussed

before, WCET analysis primarily works on the control flow graph (CFG) of a

3.3. Modeling timing interactions 265

given program. Each loop in the CFG is unrolled once to distinguish the first

loop iteration from all other loop iterations. This limited unrolling helps both

cache analysis (to distinguish cold cache misses) and the bus analysis (to dis-

tinguish the bus contexts outside of or within the loop). For each basic block,

the pipeline analysis is carried out via the execution graph modeling (cf. Sec-

tion 3.3.1). During the pipeline modeling, the outcome of cache analyses is

used to compute the delay of different pipeline stages, such as instruction

fetch (IF). Besides, the pipeline modeling also computes the set of bus con-

texts that may appear at the entry and the exit of each pipeline stage. These

bus contexts are then used to accurately compute the bus delay suffered by

each potential memory access.

During the pipeline modeling, basic blocks are traversed in topological

order of the acyclic CFG (i.e. ignoring the backedges of the CFG). If a basic

block is enclosed by loop(s), the pipeline modeling needs to be carried out

repeatedly to distinguish different bus contexts within the loop. In particu-

lar, basic blocks within a loop have different WCETs for each bus context

entering the loop. Potentially, there might be a huge number of bus contexts

that may enter a loop. This, in turn, may lead to a full-fledged loop unrolling.

To avoid this, the discussed analysis methodology approximates the poten-

tial bus contexts via limited loop unrolling. Specifically, the bus contexts that

may enter a loop L, is approximated via a flow graph GL. The flow graph

GL contains N nodes if the loop L is unrolled N − 1 times. Besides, GL

contains a backedge to approximate the bus contexts for all iterations beyond

N . The flow graph GL is also used to bound the execution count of differ-

ent bus contexts with which the loop L might be executed. These bounds on

execution counts are specified as ILP constraints. These ILP constraints are

linked up with the CFG structural constraints and ILP constraints to bound

mispredicted branches. Finally, all such ILP constraints are used to formulate

the WCET analysis as maximizing the objective function of an ILP problem.

3.3.4 Iterative modeling of pipeline latency

Let us assume each node i in the execution graph is annotated with the fol-

lowing timing parameters, which are computed iteratively:

• earliest[tready
i], earliest[tstart

i], earliest[tfinish
i] : Earliest ready, ear-

liest start and earliest finish time of node i, respectively.

266 WCET analysis for multi-core platforms

• latest[tready
i], latest[tstart

i], latest[tfinish
i] : Latest ready, latest start

and latest finish time of node i, respectively.

For each pipeline stage i, earliest[tready
i] and earliest[tstart

i] are initialized

to zero, whereas, earliest[tfinish
i] is initialized to the minimum latency suf-

fered by the pipeline stage i. On the other hand, latest[tready
i], latest[tstart

i]

and latest[tfinish
i] are all initialized to ∞ for each pipeline stage i. The

active time span of node i can be captured by the following timing inter-

val: [earliest[tready
i], latest[tfinish

i]]. Therefore, each node of the execution

graph is initialized with a timing interval [0, ∞].

Pipeline modeling is performed in an iterative fashion. The iterative anal-

ysis starts with the coarse interval [0, ∞] for each node and subsequently, the

interval is tightened in each iteration. The computation of a precise interval

takes into account the analysis result of caches and shared bus. The iterative

analysis eliminates certain infeasible contention among the pipeline stages in

each iteration, thereby leading to a tighter timing interval after each iteration.

The iterative analysis starts with a contention relation. Such a contention rela-

tion contains pairs of instructions which may potentially delay each other due

to contention. Initially, all possible pairs of instructions are included in the

contention relation and after each iteration, pairs of instructions whose tim-

ing intervals do not overlap, are removed from this relation. If the contention

relation does not change in some iteration, the iterative analysis terminates.

Since the number of instructions in a basic block is finite, the contention

relation contains a finite number of elements and in each iteration, at least

one element is removed from the relation. Therefore, this iterative analysis is

guaranteed to terminate. Moreover, if the contention relation does not change,

the timing interval of each node reaches a fixed-point after the analysis ter-

minates. These timing intervals are used for computing the WCET of basic

blocks. In the following, we shall discuss how the presence of a shared cache

and a shared bus affects the timing information of different pipeline stages.

3.3.5 Interaction of shared caches with pipeline

Let us assume CHMCL1
i denotes the AH/AM/NC cache hit-miss classi-

fication of an IF node i in L1 cache. Similarly, CHMCL2
i captures the

AH/AM/NC cache hit-miss classification of an IF node i in the shared L2
cache. Further assume that Ei denotes the possible latencies of an IF node i

3.3. Modeling timing interactions 267

without considering any shared bus delay. Using the preceding notations, Ei

can be defined as follows:

Ei =

1, if CHMCL1
i = AH;

LAT L1 + 1, if CHMCL1
i = AM ∧ CHMCL2

i = AH;

LAT L1 + LAT L2 + 1, if CHMCL1
i = AM ∧ CHMCL2

i = AM ;

[LAT L1 + 1, LAT L1 + LAT L2 + 1], if CHMCL1
i = AM

∧CHMCL2
i = NC;

[1, LAT L1 + 1], if CHMCL1
i = NC ∧ CHMCL2

i = AH;

[1, LAT L1 + LAT L2 + 1], otherwise.

(3.3)

where LAT L1 and LAT L2 represent the fixed L1 and L2 cache miss la-

tencies respectively. Note that the interval-based representation captures the

possibilities of both a cache hit and a cache miss in case of an NC catego-

rized cache access. Therefore, the computation of Ei can also deal with the

architectures that exhibit timing anomalies. In the next section, we show the

interaction of shared buses with the pipeline.

3.3.6 Interaction of shared buses with pipeline

For the sake of clarity, we shall assume that each core has been assigned the

same slot length for a given TDMA bus schedule. For variable length slots,

the analysis methodology does not change, however, the equations described

in the following become more complex in terms of readability. Therefore, to

give the general idea, we shall discuss bus slots (assigned to each core) are the

same in terms of length. We shall discuss the optimization of more complex

TDMA schedules (with variable slot lengths) in section 4.

Let us assume that we have a total of C cores and the TDMA-based

scheme assigns a slot length Sl to each core. Therefore, the length of one

complete round is SlC. We begin with the following definitions which are

used throughout the section:

Definition 3.1. (TDMA offset) A TDMA offset at a particular time T is de-

fined as the relative distance of T from the beginning of the last scheduled

round. Therefore, at time T , the TDMA offset can be precisely defined as

T mod SlC.

268 WCET analysis for multi-core platforms

Definition 3.2. (Bus context) A Bus context for a particular execution graph

node i is defined as the set of TDMA offsets reaching/leaving the correspond-

ing node. For each execution graph node i, we can track the incoming bus

context (denoted Oin
i) and the outgoing bus context (denoted Oout

i).

For a task executing in core p (where 0 ≤ p < C), latest[tfinish
i] and

earliest[tfinish
i] are computed for an IF execution graph node i as follows:

latest[tfinish
i] = latest[tstart

i] + max_latp(Oin
i , Ei) (3.4)

earliest[tfinish
i] = earliest[tstart

i] + min_latp(Oin
i , Ei) (3.5)

Note that max_latp, min_latp are not constants and depend on the incoming

bus context (Oin
i) and the set of possible latencies of IF node i (Ei) in the

absence of a shared bus. max_latp and min_latp are defined as follows:

max_latp(Oin
i , Ei) =

1, if CHMCL1
i = AH;

max
o∈Oin

i
,t∈Ei

∆p(o, t), otherwise.
(3.6)

min_latp(Oin
i , Ei) =

1, if CHMCL1
i 6= AM ;

min
o∈Oin

i
,t∈Ei

∆p(o, t), otherwise.
(3.7)

In the above, Ei represents the set of possible latencies of an IF node i in the

absence of shared bus delay (refer to Equation 3.3). Given a TDMA offset

o and latency t in the absence of shared bus delay, ∆p(o, t) computes the

total delay (including shared bus delay) faced by the IF stage of the pipeline.

∆p(o, t) can be defined as follows (similar to [22] or [48]):

∆p(o, t) =

t, if pSl ≤ o + t ≤ (p + 1)Sl;

t + pSl − o, if o < pSl;

t + (C + p)Sl − o, otherwise.

(3.8)

In the following, we shall now show the computation of incoming and out-

going bus contexts (i.e. Oin
i and Oout

i respectively) for an execution graph

node i.

3.3. Modeling timing interactions 269

Computation of O
out

i
from O

in

i
The computation of Oout

i depends on

Oin
i , on the possible latencies of execution graph node i (including shared bus

delay) and on the contention suffered by the corresponding pipeline stage. In

the modeled pipeline, inorder stages (i.e. IF, ID, WB and CM) do not suffer

from contention. But the out-of-order stage (i.e. EX stage) may experience

contention when it is ready to execute (i.e. operands are available) but can-

not start execution due to the unavailability of a functional unit. Worst case

contention period of an execution graph node i can be denoted by the term

latest[tstart
i] − latest[tready

i]. For best case computation, we can conserva-

tively assume the absence of contention. Therefore, for a particular core p

(0 ≤ p < C), we can compute Oout
i from the value of Oin

i as follows:

Oout
i =

u(Oin
i , Ei + [0, latest[tstart

i] − latest[tready
i]]), if i = EX;

u(Oin
i ,

⋃

o∈Oin
i

,t∈Ei
∆p(o, t)), if i = IF ;

u(Oin
i , Ei), otherwise.

(3.9)

Here, u denotes the update function on TDMA offset set with a set of possible

latencies of node i and is defined as follows:

u(O, X) =
⋃

o∈O,t∈X

{(o + t) mod SlC} (3.10)

The iterative pipeline modeling refines the worst-case contention suf-

fered by node i. This refinement approximates the overlap between EX

stages using the overlap in timing interval [earliest[tready
i], latest[tfinish

i]].

Finally, the worst-case contention suffered by node i is captured in the

quantity latest[tstart
i] − latest[tready

i]]. Therefore, Ei + [0, latest[tstart
i] −

latest[tready
i]] captures all possible latencies suffered by the execution graph

node i, taking care of contentions as well. Consequently, Oout
i captures all

possible TDMA offsets exiting node i, when the same node is entered with

bus context Oin
i . More precisely, assuming that Oin

i represents an over-

approximation of the incoming bus context at node i, the computation by

Equation 3.9 ensures that Oout
i represents an over-approximation of the out-

going bus context from node i.

Computation of O
in

i
The value of Oin

i depends on the value of Oout
j ,

where j is a predecessor of node i in the execution graph. If pred(i) de-

270 WCET analysis for multi-core platforms

notes all the predecessors of node i, clearly, ∪j∈pred(i)O
out
j gives a sound

approximation of Oin
i . However, it is important to observe that not all prede-

cessors in the execution graph can propagate TDMA offsets to node i. Recall

that the edges in the execution graph represent dependency (either due to

resource constraints or due to true data dependencies). Therefore, node i in

the execution graph can only start when all the nodes in pred(i) have fin-

ished. Consequently, the TDMA offsets are propagated to node i only from

the predecessor j, which finishes immediately before i is ready. Nevertheless,

a static analyzer may not be able to compute a single predecessor that prop-

agates TDMA offsets to node i. However, for two arbitrary execution graph

nodes j1 and j2, if we can guarantee that earliest[tfinish
j2] > latest[tfinish

j1],

we can also guarantee that j2 finishes later than j1. The computation of Oin
i

captures this property:

Oin
i =

⋃

{Oout
j | j ∈ pred(i)∧ earliest[tfinish

pmax] ≤ latest[tfinish
j]} (3.11)

where pmax is any predecessor of i that satisfies the condition

latest[tfinish
pmax] = maxj∈pred(i) latest[tfinish

j]. Therefore, Oin
i captures all

possible outgoing TDMA offsets from the predecessor nodes that are pos-

sibly finished latest. Given that the value of Oout
j is an over-approximation

of the outgoing bus context for each predecessor j of i, Equation 3.11 gives

an over-approximation of the incoming bus context at node i. Finally, Equa-

tion 3.9 and Equation 3.11 together ensure a sound computation of the bus

contexts at the entry and exit of each execution graph node.

3.3.7 Execution context of a basic block

Computing bus context without loops In the previous section, we

have discussed the pipeline modeling of a basic block B in isolation. How-

ever, to correctly compute the execution time of B, we need to consider 1)

contentions (for functional units) and data dependencies among instructions

prior to B and instructions in B; 2) contentions among instructions after B

and instructions in B. The set of instructions before (after) B which directly

affect the execution time of B is called the prologue (epilogue) of B [54].

B may have multiple prologues and epilogues due to the presence of multi-

ple program paths. However, the size of any prologue or epilogue is bounded

by the total size of IFQ and ROB. In particular, the number of instructions

3.3. Modeling timing interactions 271

which can be in the pipeline, when B enters the pipeline, is bounded by the

total size of IFQ and ROB. Similarly, the number of instructions after B,

which can contend with instructions in B, is bounded by the size of ROB.

To distinguish the execution contexts of a basic block B, execution graphs

are constructed for each possible combination of prologues and epilogues of

B. Each execution graph of B contains the instructions from B itself (called

body) and the instructions from one possible prologue and epilogue. Assume

we compute the incoming (outgoing) bus context Oin
i (p, e) (Oout

i (p, e)) at

body node i for prologue p and epilogue e (using the technique described in

Section 3.3.6). After the analysis of B is completed for all possible combina-

tions of prologues and epilogues, we can compute an over-approximation of

Oin
i (Oout

i) by merge operation as follows:

Oin
i =

⋃

p,e

Oin
i (p, e) (3.12)

Oout
i =

⋃

p,e

Oout
i (p, e) (3.13)

Clearly, Oin
i (Oout

i) captures an over-approximation of the bus context at the

entry (exit) of node i, irrespective of any prologue or epilogue of B.

To effectively compute the TDMA offsets, basic blocks are analyzed in

topological order (not accounting the back edges). As a result, before com-

puting the bus contexts of a basic block, the bus contexts of its prologues are

computed at least once. Therefore, the set of bus contexts within a basic block

can be computed precisely by propagating the bus contexts computed at its

prologues.

Computing bus context in the presence of loops In the presence

of loops, a basic block can be executed with different bus contexts at differ-

ent iterations of the loop. The bus contexts at different iterations depend on

the set of instructions which can propagate TDMA offsets across loop iter-

ations. For each loop l, two sets of nodes is computed — πin
l and πout

l . πin
l

are the set of pipeline stages which can propagate TDMA offsets across it-

erations, whereas, πout
l are the set of pipeline stages which could propagate

TDMA offsets outside of the loop. Therefore, πin
l corresponds to the pipeline

stages of instructions inside l which resolve loop carried dependency (due to

272 WCET analysis for multi-core platforms

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

from previous iteration

of loop

Body instructions
inside the loop

Prologue instructions

nodes

nodesπout
l

πin
l

Instructions outside loop

Figure 3.18: πin
l and πout

l nodes shown with the example of a sample execution graph. πin
l

nodes propagate bus contexts across iterations, whereas, πout
l nodes propagate bus contexts

outside of loop.

resource constraints, pipeline structural constraints or true data dependency).

On the other hand, πout
l corresponds to the pipeline stages of instructions in-

side l which resolve the dependency of instructions outside of l. Figure 3.18

demonstrates the πout
l and πin

l nodes for a sample execution graph.

The bus context at the entry of all non-first loop iterations can be captured

as (Oin
x1, Oin

x2, . . . , Oin
xn) where πin

l = {x1, x2, . . . , xn}. The bus context at

the first iteration is computed from the bus contexts of instructions prior to l

(using the technique described in Section 3.3.6). Finally, Oout
xi for any xi ∈

πout
l can be responsible for affecting the execution time of any basic block

outside of l.

3.3. Modeling timing interactions 273

3.3.8 Bounding the execution count of a bus context

Foundation As discussed in the preceding, a basic block inside some loop

may execute under different bus contexts. For all non-first iterations, a loop

l is entered with bus context (Oin
x1, Oin

x2, . . . , Oin
xn) where {x1, x2, . . . , xn}

are the set of πin
l nodes as described in Figure 3.18. These bus contexts are

computed during an iterative analysis of the loop l (described below). On the

other hand, the bus context at the first iteration of l is a tuple of TDMA offsets

propagated from outside of l to some pipeline stage inside l. Note that the

bus context at the first iteration of l is computed by following the general

procedure as described in Section 3.3.6.

In this section, we show how the execution count of different bus contexts

can be bounded by generating additional ILP constraints. These additional

constraints are added to a global ILP formulation to find the WCET of the

entire program. We begin with the following notations:

Ωl : The set of all bus contexts that may reach loop l in any iteration.

Ω
s

l
: The set of all bus contexts that may reach loop l at first iteration.

Clearly, Ωs
l ⊆ Ωl. Moreover, if l is contained inside some outer loop, l would

be invoked more than once. As a result, Ωs
l may contain more than one ele-

ment. Note that Ωs
l can be computed as a tuple of TDMA offsets propagated

from outside of l to some pipeline stage inside l. Therefore, Ωs
l can be com-

puted during the procedure described in Section 3.3.6. If l is an inner loop, an

element of Ωs
l is computed (as described in Section 3.3.6) for each analysis

invocation of the loop immediately enclosing l.

G
s

l
: The flow graph capturing the transition of different bus contexts. For

each s0 ∈ Ωs
l , a flow graph Gs

l = (V s
l , F s

l) is constructed, where V s
l ⊆ Ωl.

The graph Gs
l captures the transitions among different bus contexts across

loop iterations. An edge fw1→w2
= (w1, w2) ∈ F s

l exists (where w1, w2 ∈

Ωl) if and only if l can be entered with bus context w1 at some iteration n and

with bus context w2 at iteration n + 1. Note that Gs
l cannot be infinite, as we

have only finitely many bus contexts that are the nodes of Gs
l .

M
w

l
: The number of times the body of loop l is entered with bus context

w ∈ Ωl in any iteration.

M
w1→w2

l
: The number of times l can be entered with bus context w1 at

some iteration n and with bus context w2 at iteration n + 1 (where w1, w2 ∈

Ωl). Clearly, if fw1→w2
/∈ F s

l for any flow graph Gs
l , Mw1→w2

l = 0.

274 WCET analysis for multi-core platforms

Construction of G
s

l
For each loop l and for each s0 ∈ Ωs

l , a flow graph

Gs
l is constructed. Initially, Gs

l contains a single node representing bus con-

text s0 ∈ Ωs
l . After analyzing all the basic blocks inside l (using the technique

described in Section 3.3.6), we may get a new bus context at some node

i ∈ πin
l (recall that πin

l are the set of execution graph nodes that may prop-

agate bus context across loop iterations). As a byproduct of this process, we

also get the WCET of all basic blocks inside l when the body of l is entered

with bus context s0. Let us assume that for any s ∈ Ωl \ Ωs
l and i ∈ πin

l , s(i)

represents the bus context Oin
i . Suppose we get a new bus context s1 ∈ Ωl

after analyzing the body of l once. Therefore, we can add an edge from s0 to

s1 in Gs
l . We can continue expanding Gs

l until sn(i) ⊆ sk(i) for all i ∈ πin
l

and for some 1 ≤ k ≤ n − 1 (where sn ∈ Ωl represents the bus context at

the entry of l after it is analyzed n times). In this case, the construction of

Gs
l can be terminated by adding a backedge from sn−1 to sk. We can also

stop expanding Gs
l if we have expanded as many times as the relative loop

bound of l. Note that Gs
l contains at least two nodes, as the bus context at first

loop iteration is always distinguished from the bus contexts in any other loop

iteration.

It is worth mentioning that the construction of Gs
l is much less computa-

tionally intensive than a full unrolling of l. The bus context at the entry of l

quickly reaches a fixed-point and we can stop expanding Gs
l . In experiments,

it was observed that the number of nodes in Gs
l never exceeds ten. For very

small loop bounds (typically less than 5), the construction of Gs
l continues

till the loop bound. For larger loop bounds, most of the time, the construction

of Gs
l reaches the diverged bus context [0, . . . , SlC − 1] quickly (in less than

ten iterations). As a result, through a small node count in Gs
l , we can avoid

the computationally intensive unrolling of every loop.

Generating separate ILP constraints Using each flow graph Gs
l for

loop l, ILP constraints are generated to distinguish different bus contexts un-

der which a basic block can be executed. In an abuse of notation, we shall use

w.i to denote that the basic block i is reached with bus context w.i when the

immediately enclosing loop of i is reached with bus context w in any itera-

tion. The following ILP constraints are generated to bound the value of Mw
l :

3.3. Modeling timing interactions 275

∀w ∈ Ωl :
∑

x∈Ωl

Mx→w
l = Mw

l (3.14)

∀w ∈ Ωl : Mw
l − 1 ≤

∑

x∈Ωl

Mw→x
l ≤ Mw

l (3.15)

∑

w∈Ωl

Mw
l = Nl.h (3.16)

where Nl.h denotes the number of times the header of loop l is executed.

Equations 3.14-3.15 generate standard flow constraints from each graph Gs
l ,

constructed for loop l. Special constraints need to be added for the bus con-

texts with which the loop is entered at the first iteration and at the last itera-

tion. If w is a bus context with which loop l is entered at the last iteration, Mw
l

is more than the execution count of outgoing flows (i.e. Mw→x
l). Equation

3.15 takes this special case into consideration. On the other hand, Equation

3.16 bounds the aggregate execution count of all possible contexts w ∈ Ωl

with the total execution count of the loop header. Note that Nl.h will further

be involved in defining the CFG structural constraints, which relate the ex-

ecution count of a basic block with the execution count of its incoming and

outgoing edges [80]. Equations 3.14-3.16 do not ensure that whenever loop l

is invoked, the loop must be executed at least once with some bus context in

Ωs
l . We can add the following ILP constraints to ensure this:

∀w ∈ Ωs
l : Mw

l ≥ Nw.h
l.h (3.17)

Here Nw.h
l.h denotes the number of times the header of loop l is executed with

bus context w. The value of Nw.h
l.h is further bounded by the CFG structural

constraints.

The constraints generated by Equations 3.14-3.17 are sufficient to derive

the WCET of a basic block in the presence of non-nested loops. In the pres-

ence of nested loops, however, we need additional ILP constraints to relate

the bus contexts at different loop nests. Assume that the loop l is enclosed by

an outer loop l′. For each w′ ∈ Ωl′ , we may get a different element s0 ∈ Ωs
l

and consequently, a different Gs
l = (V s

l , Es
l) for loop l. Therefore, we have

the following ILP constraints for each flow graph Gs
l :

∀Gs
l = (V s

l , Es
l) :

∑

w∈V s
l

Mw
l ≤ boundl ∗ (

∑

w′∈parent(Gs
l
)

Mw′

l′) (3.18)

276 WCET analysis for multi-core platforms

where boundl represents the relative loop bound of l and parent(Gs
l) de-

notes the set of bus contexts in Ωl′ for which the flow graph Gs
l is constructed

at loop l. The left-hand side of Equation 3.18 accumulates the execution count

of all bus contexts in the flow graph Gs
l . The total execution count of all bus

contexts in V s
l is bounded by boundl, for each construction of Gs

l (as boundl

is the relative loop bound of l). Since Gs
l is constructed

∑

w′∈parent(Gs
l
) Mw′

l′

times, the total execution count of all bus contexts in V s
l is bounded by the

right hand side of Equation 3.18.

Finally, we need to bound the execution count of any basic block i (im-

mediately enclosed by loop l), with different bus contexts. The following two

constraints are generated to bound this value:

∑

w∈Ωl

Nw.i
i = Ni (3.19)

∀w ∈ Ωl : Nw.i
i ≤ Mw

l (3.20)

where Ni represents the total execution count of basic block i and Nw.i
i rep-

resents the execution count of basic block i with bus context w.i. Equation

3.20 tells the fact that basic block i can execute with bus context w.i at some

iteration of l only if l is reached with bus context w at the same iteration (by

definition). Ni will be further constrained through the structure of program’s

CFG, which we exclude in our discussion.

Computing bus contexts at loop exit To derive the WCET of the

whole program, we need to estimate the bus context exiting a loop l (say

Oexit
l). A recently proposed work ([48]) has shown the computation of Oexit

l

without a full loop unrolling. We can use a similar technique as in [48] with

one important difference: In [48], a single offset graph Goff is maintained,

which tracks the outgoing bus context from each loop iteration. Once Goff

got stabilized, a separate ILP formulation on Goff derives the value of Oexit
l .

In the presence of pipelined architectures, Oout
i for any i ∈ πout

l could be

responsible for propagating bus context outside of l (refer to Figure 3.18).

Therefore, a separate offset graph is maintained for each i ∈ πout
l (say Gi

off)

and an ILP formulation for each Gi
off can derive an estimation of the bus

context exiting the loop (say Oexit
i). In [48], it has been proved that the com-

putation of Oexit
l is always an over-approximation (i.e. sound). Given that the

3.3. Modeling timing interactions 277

value of each Oout
i is sound, it is now straightforward to see that the com-

putation of each Oexit
i is also sound. For details of this analysis, readers are

further referred to [48].

3.3.9 Effect of branch prediction

The presence of branch prediction introduces additional complexity in the

WCET computation. If a conditional branch is mispredicted, the timing due

to the mispredicted instructions needs to be computed. Mispredicted instruc-

tions introduce additional conflicts in L1 and L2 cache which need to be

modeled for a sound WCET computation. Similarly, branch misprediction

will also affect the bus delay suffered by the subsequent instructions. In the

following, we shall describe how the framework models the interaction of

branch predictor on cache and bus. We assume that there could be at most

one unresolved branch at a time. Therefore, the number of mispredicted in-

structions is bounded by the number of instructions till the next branch as

well as the total size of the instruction fetch queue and reorder buffer.

Effect on cache for speculative execution

Abstract-interpretation-based cache analysis produces a fixed point on ab-

stract cache content at the entry (denoted as ACSin
i) and at the exit (denoted

as ACSout
i) of each basic block i. If a basic block i has multiple predeces-

sors, output cache states of the predecessors are joined to produce the input

cache state of basic block i. Consider an edge j → i in the program’s CFG. If

j → i is an unconditional edge, computation of ACSin
i does not require any

change. However, if j → i is a conditional edge, the condition could be cor-

rectly or incorrectly predicted during the execution. For a correct prediction,

the cache state ACSin
i is still sound. On the other hand, for incorrect predic-

tion, ACSin
i must be updated with the memory blocks accessed at the mis-

predicted path. We assume that there could be at most one unresolved branch

at a time. Therefore, the number of mispredicted instructions is bounded by

the number of instructions till the next branch as well as the total size of the

instruction fetch queue and reorder buffer. To maintain a safe cache state at

the entry of each basic block i, we can join the two cache states arising due to

the correct and incorrect predictions of conditional edge j → i. We demon-

278 WCET analysis for multi-core platforms

(c)

j

acsoutspec

i

(a) (b)

j j

Speculated
instructions

acsoutspec

acsini = acsoutj acsini = acsoutspec

acsoutj

i i

acsoutj

acsini

= Join(acsoutj , acsoutspec)

Figure 3.19: (a) Computation of acsin
i when the edge j → i is correctly predicted, (b)

Computation of acsin
i when the edge j → i is mispredicted, (c) A safe approximation of

acsin
i by considering both correct and incorrect prediction of edge j → i.

strate the entire scenario through an example in Figure 3.19. In Figure 3.19,

we demonstrate the procedure for computing the abstract cache state at the

entry of a basic block i. Basic block i is conditionally reached from basic

block j. To compute a safe cache content at the entry of basic block i, we can

combine two different possibilities —- one when the respective branch is cor-

rectly predicted (Figure 3.19(a)) and the other when the respective branch is

incorrectly predicted (Figure 3.19(b)). The combination is performed through

an abstract join operation (as shown in Figure 3.19(c)), which depends on the

type of analysis (must or may) being computed. A stabilization on the abstract

cache contents at the entry and exit of each basic block is achieved through

conventional fixed point analysis.

Effect on bus for speculative execution

Due to branch misprediction, some additional instructions might be fetched

from the mispredicted path. As described in Section 3.3.7, an execution graph

for each basic block B contains a prologue (instructions before B which di-

rectly affect the execution time of B). If the last instruction of the prologue

is a conditional branch, the respective execution graph is augmented with

the instructions along the mispredicted path ([54]). Since the propagation of

bus context is entirely performed on the execution graph (as shown in Sec-

3.3. Modeling timing interactions 279

tion 3.3.6), the shared bus analysis remains unchanged, except the fact that

it works on an augmented execution graph (which contains instructions from

the mispredicted path) in the presence of speculative execution.

Computing the number of mispredicted branches

In the presence of a branch predictor, each conditional edge j → i in the pro-

gram CFG can be correctly or incorrectly predicted. Let us assume Ej→i de-

notes the total number of times control flow edge j → i is executed and Ec
j→i

(Em
j→i) denotes the number of times the control flow edge j → i is executed

due to correct (incorrect) branch prediction. Clearly, Ej→i = Ec
j→i + Em

j→i.

The value of Ej→i is further bounded by CFG structural constraints. On the

other hand, values of Ec
j→i and Em

j→i depend on the type of branch predictor.

ILP-based techniques, such as the one proposed in [53] can be used to pre-

dict the bound on Ec
j→i and Em

j→i. The ILP constraints generated on Ec
j→i

and Em
j→i are as well captured in the global ILP formulation to compute the

whole program WCET. We exclude here the details of branch predictor mod-

eling — interested readers are referred to [53].

3.3.10 WCET computation of an entire program

We compute the WCET of the entire program with N basic blocks by using

the following objective function:

Maximize T =
N

∑

i=1

∑

j→i

∑

w∈Ωi

tc,w
j→i ∗ Ec,w

j→i + tm,w
j→i ∗ Em,w

j→i (3.21)

Ωi denotes the set of all bus contexts under which basic block i can exe-

cute. Basic block i can be executed with different bus contexts. However,

the number of elements in Ωi is always bounded by the number of bus con-

texts entering the loop immediately enclosing i (refer to Section 3.3.7). tc,w
j→i

denotes the WCET of basic block i when the basic block i is reached from

basic block j, the control flow edge j → i is correctly predicted and i is

reached with bus context w ∈ Ωi. Similarly, tm,w
j→i denotes the WCET of basic

block i under the same bus context but when the control flow edge j → i

was mispredicted. Note that both tc,w
j→i and tm,w

j→i are computed during the it-

erative pipeline modeling (with the modifications proposed in Section 3.3.4).

280 WCET analysis for multi-core platforms

Ec,w
j→i (Em,w

j→i) denotes the number of times basic block i is reached from basic

block j with bus context w and when the control flow edge j → i is correctly

(incorrectly) predicted. Therefore, we have the following two constraints:

Ec
j→i =

∑

w∈Ωi

Ec,w
j→i, Em

j→i =
∑

w∈Ωi

Em,w
j→i (3.22)

Constraints on Ec
j→i and Em

j→i are proposed by the ILP-based formulation

in [53]. On the other hand, Ec,w
j→i and Em,w

j→i are bounded by the CFG struc-

tural constraints ([80]) and the constraints proposed by Equations 3.14-3.20

in Section 3.3.7. Note that in Equations 3.14-3.20, we only discuss the ILP

constraints related to the bus contexts. Other ILP constraints, such as CFG

structural constraints and user constraints, are used in the analysis framework

for an IPET implementation.

Finally, the WCET of the program maximizes the objective function in

Equation 3.21. Any ILP solver (e.g. CPLEX) can be used for maximizing the

objective function in Equation 3.21.

3.3.11 Extension of shared cache modeling

Our discussion on cache analysis has so far concentrated on the least-

recently-used (LRU) cache replacement policies. However, a widely used

cache replacement policy is first-in-first-out (FIFO). FIFO cache replacement

policy has been used in embedded processors such as ARM9 and ARM11

[67]. Recently, abstract interpretation based analysis of FIFO replacement

policy has been proposed in [33, 34] for single level caches and for multi-level

caches in [41]. In this section, we shall discuss the extension of the shared

cache analysis for FIFO cache replacement policy. We shall also show that

such an extension will not change the modeling of timing interactions among

shared cache and other basic micro-architectural components (e.g. pipeline

and branch predictor).

Review of cache analysis for FIFO replacement

We can use the must cache analysis for FIFO replacement as proposed in [33].

In FIFO replacement, when a cache set is full and still the processor requests

fresh memory blocks (which map to the same cache set), the first cache line

entering the respective cache set (i.e. first-in) is replaced. Therefore, the set

3.3. Modeling timing interactions 281

of tags in a k-way FIFO abstract cache set (say As) can be arranged from

last-in to first-out order ([33]) as follows:

As = [T1, T2, . . . , Tk] (3.23)

where each Ti ⊆ T and T is the set of all cache tags. Unlike LRU, cache state

never changes upon a cache hit with FIFO replacement policy. Therefore, the

cache state update on a memory reference depends on the hit-miss categoriza-

tion of the same memory reference. Assume that a memory reference belongs

to cache tag tagi. The FIFO abstract cache set As = [T1, T2, . . . , Tk] is up-

dated on the access of tagi as follows:

τ([T1, T2, . . . , Tk], tagi) =

[T1, T2, . . . , Tk], if tagi ∈
⋃

i Ti;

[{tagi}, T1, . . . , Tk−1], if tagi /∈
⋃

i Ti

∧|
⋃

i Ti| = k;

[φ, T1, . . . , Tk−1 ∪ {tagi}], otherwise.

(3.24)

The first scenario captures a cache hit and the second scenario captures a

cache miss. The third scenario appears when the static analysis cannot ac-

curately determine the hit-miss categorization of the memory reference. It is

worthwhile to mention that the analysis of FIFO caches can be greatly im-

proved using the information from may analysis, as also shown in [33]. Pre-

cise analysis of different cache replacement policies (including FIFO caches),

although interesting and challenging, is outside the scope of this monograph.

Therefore, interested readers are referred to [33] and related literature for fur-

ther details.

The abstract join function for the FIFO must cache analysis is exactly

the same as the LRU must cache analysis. The join function between two

abstract FIFO cache sets computes the intersection of the abstract cache sets.

If a cache tag is available in both abstract cache sets, the right most relative

position of the cache tag is captured after the join operation.

Analysis of shared cache with FIFO replacement

To analyze the shared cache, we can use the technique described in Section

3.1.2. Recall that shared cache conflict analysis may change the categoriza-

tion of a memory reference from all-hit (AH) to unclassified (NC). For the

282 WCET analysis for multi-core platforms

sake of illustration, assume a memory reference which accesses the memory

block m. This analysis phase first computes the number of unique conflicting

shared cache accesses from different cores. Then it is checked whether the

number of conflicts from different cores can potentially replace m from the

shared cache. More precisely, for an N -way set-associative shared cache, m

might be replaced due to inter-core conflicts if the following condition holds:

N − AGEfifo(m) < |Mc(m)| (3.25)

where |Mc(m)| represents the number of conflicting memory blocks from

different cores which may potentially access the same L2 cache set as m.

AGEfifo(m) represents the relative position of memory block m in the FIFO

abstract cache set and in the absence of inter-core cache conflicts. Recall

that the memory blocks (or the tags) are arranged according to the last-in

to first-out order in the FIFO abstract cache set. Therefore, the term N −

AGEfifo(m) captures the maximum number of fresh memory blocks which

can enter the FIFO cache before m being evicted out. Using this notion, the

shared cache update function can now be defined as follows.

τ([T1, T2, . . . , Tk], tagi) =

[T1, T2, . . . , Tk], if tagi ∈
⋃

i Ti

∧N − AGEfifo(tagi) ≥ |Mc(tagi)|

[{tagi}, T1, T2 . . . , Tk−1],

if tagi /∈
⋃

i Ti ∧ |
⋃

i Ti| = k;

[φ, T1 \ {tagi}, T2 \ {tagi}, . . . , Tk−1 ∪ {tagi}],

otherwise.

(3.26)

Timing interaction with FIFO caches with pipeline and branch

predictor

As described before, after the FIFO shared cache analysis, memory refer-

ences are categorized as all-hit (AH), all-miss (AM) or unclassified (NC). In

3.3. Modeling timing interactions 283

the presence of pipeline, such a categorization of instruction memory refer-

ences adds computation cycles with the instruction fetch (IF) stage. There-

fore, we use Equation 3.3 to compute the latency suffered by cache hit/miss

and propagate the latency through different pipeline stages.

Recall from Section 3.3.9 that speculative execution may introduce addi-

tional cache conflicts. In Section 3.3.9, we show the modification of abstract

interpretation based cache analysis to handle the effect of speculative execu-

tion on cache. From Figure 3.19, we observe that the solution is independent

of the cache replacement policies concerned. Therefore, the modification due

to speculative execution for FIFO replacement policy is exactly the same. We

can perform an abstract join operation on the cache states along the correct

and mispredicted path (as shown in Figure 3.19). However, for FIFO replace-

ment polices, the abstract join operation is performed according to the FIFO

replacement analysis (instead of the LRU join operation we performed in case

of LRU caches).

Other cache organizations

In the preceding, we have discussed the extension of the WCET analysis

framework with FIFO replacement policy. We have shown that as long as

the cache tags in an abstract cache set can be arranged according to the order

of their replacement, the shared cache conflict analysis can be integrated. As a

result, the modeling for the timing interaction among (shared) cache, pipeline

and branch predictor is independent of the underlying cache replacement pol-

icy. Nevertheless, for some cache replacement policies, arranging the cache

tags according to the order of their replacement poses a challenge (e.g. PLRU

[35]). Cache analysis based on relative competitiveness [67] tries to analyze

a cache replacement policy with respect to an equivalent LRU cache, but

with different parameters (e.g. associativity). Any cache replacement analysis

based on relative competitiveness can directly be integrated with the WCET

analysis framework. Nevertheless, more precise analysis than the ones based

on relative competitiveness can be designed, as shown in [35] for PLRU pol-

icy. However, description of such precise cache analysis is outside the scope

of this monograph. The purpose of this section is to describe a unified WCET

analysis framework for multi-core processors and any precision gain in the

284 WCET analysis for multi-core platforms

existing cache analysis technique will directly benefit the framework by im-

proving the precision of WCET prediction.

In this section, we have focused on the non-inclusive cache hierarchy.

In multi-core architectures, inclusive cache hierarchy may limit performance

when the size of the largest cache is not significantly larger than the sum

of the size of the smaller caches. Therefore, processor architects sometimes

resort to non-inclusive cache hierarchies [88]. On the other hand, inclusive

cache hierarchies greatly simplify the cache coherence protocol. The analysis

of inclusive cache hierarchy requires to take account of the invalidations of

certain cache lines to maintain the inclusion property (as shown in [41] for

multi-level private cache hierarchies). The analysis in [41] first analyzes the

multi-level caches for general non-inclusive cache hierarchies and a post-

processing phase may change the categorization of a memory reference from

all-hit (AH) to unclassified (NC). The shared cache conflict analysis phase

can be applied on this reduced set of AH categorized memory references for

inclusive caches, keeping the rest of the WCET analysis framework entirely

unchanged. Therefore, we believe that the inclusive cache hierarchies do not

pose any additional challenge in the context of shared caches and the analysis

of such cache hierarchies can easily be integrated, keeping the rest of the

WCET analysis framework unchanged.

3.4 Discussion about analysis complexity

In the preceding sections, we have discussed some comprehensive proposals

for analyzing the WCET on multi-core platforms. In the following discussion,

we shall consider the complexity of such analysis techniques.

Pipeline modeling

Pipeline modeling revolves around the traversal of the execution graph. This

execution graph is constructed for each basic block. The timing information

of each node in the execution graph is computed iteratively. For each such

iteration, the complexity of traversing the execution graph is O(|V | + |E|),

where |V | is the number of nodes and |E| is the number of edges in the

execution graph. The number of nodes |V | is at least |S| · |I|, where |S|

is the number of pipeline stages and |I| is the number of instructions in the

3.4. Discussion about analysis complexity 285

basic block. Besides, the size of the execution graph depends on the following

factors:

• The sizes of instruction fetch queue (IFQ) and reorder buffer (ROB)

increase the number of nodes in the execution graph. In particular, the

size of IFQ and ROB increases the execution context of a basic block.

As a result, the complexity of pipeline modeling also increases.

• The size of the execution graph may increase with the amount of data

dependencies in the code. In particular, each data dependency corre-

sponds to an edge in the execution graph. Therefore, the complexity

of pipeline modeling also depends on the amount of data dependencies

within a basic block.

• Finally, the size of the execution graph might be increased due to sev-

eral factors influencing instruction-level parallelism. Such factors in-

clude out-of-order and superscalar processors and speculative execu-

tion, among others.

Cache modeling

The complexity of cache modeling directly depends on the number of cache

lines tracked for analysis. The number of cache lines increases with the size

of caches. As a result, the complexity of cache analysis also increases with the

size of caches in the system. Besides, the abstract join operations at control

flow merge points perform either union or intersection of different sets. As

a result, the complexity of the abstract join operation is proportional to the

complexity of set union and set intersection.

Shared bus modeling

The shared bus modeling revolves around tracking different TDMA offsets.

These TDMA offsets are tracked to accurately compute the memory la-

tency. Besides, ILP constraints are generated to accurately compute the set

of TDMA offsets at different program locations. Since the goal is to compute

the maximum memory latency, the complexity of computing memory latency

is proportional to the number of TDMA offsets. Moreover, the number of ILP

constraints (as formulated in Section 3.3.8) may increase proportionally with

286 WCET analysis for multi-core platforms

the number of TDMA offsets. Therefore, the complexity of shared bus analy-

sis heavily depends on the number of tracked TDMA offsets. The number of

TDMA offsets is proportional to the bus slot length allocated to each core and

the total number of cores. The bus slot length allocated to each core is typ-

ically small and it does not substantially influence the complexity of shared

bus analysis. In contrast, the complexity of shared bus analysis may signifi-

cantly increase with increasing number of cores, due to a substantial number

of TDMA offsets to be tracked. However, this increase in the analysis com-

plexity has a trade-off with decreased analysis pessimism. For instance, an

analyzer can capture a set of TDMA offsets via an interval, instead of track-

ing each individual TDMA offset in a set. Such an abstraction will greatly

simplify the analysis complexity. However, note that abstractions via inter-

vals may potentially capture spurious TDMA offsets, which can never appear

in any real execution. This, in turn, will increase the pessimism in the overall

WCET analysis.

Modeling branch prediction and speculation

The presence of speculative execution may increase the size of the execution

graph, which, in turn increases the complexity of pipeline modeling. This

increase in the complexity highly depends on the depth of speculation. The

depth of speculation is defined as the number of instructions that can be is-

sued in the pipeline in the presence of an unresolved branch instruction. Apart

from the speculation-depth, the size and type of branch predictor may sub-

stantially increase the number of ILP constraints generated by the discussed

analysis techniques. For instance, the presence of complex branch predic-

tors (e.g. gshare) may generate more ILP constraints than simple two-bit

branch predictors. As a result, the complexity of the WCET computation may

increase. However, the complexity of ILP-based branch predictor modeling

can be reduced by using less precise but more efficient analysis techniques,

such as abstract interpretation.

To empirically understand the impact of different analysis complexities,

this monograph includes a discussion in Section 3.5.5, where we provide em-

pirical comparisons to discuss the analysis scalability with respect to different

micro-architectural parameters. In particular, we show the analysis complex-

3.5. Experimental evaluation 287

Table 3.1: Salient features of the benchmarks used in evaluation

Benchmark Lines of code Code size (in bytes)

matmult 163 968

cnt 133 840

fir 275 584

fdct 238 2232

expint 168 824

qurt 158 1368

nsichneu 4266 38344

bs 114 408

crc 128 1936

fibcall 72 288

janne_complex 64 264

lcdnum 64 272

minver 201 1592

prime 47 208

select 114 3120

sqrt 77 336

fft 210 576

edn 283 4392

ludcmp 147 1592

ns 531 392

ndes 238 3816

bsort100 127 440

adpcm 828 6664

st 157 1880

jfdctint 374 2856

statemate 1273 9464

ity with respect to different pipeline structures, cache sizes and the presence

of speculative execution.

3.5 Experimental evaluation

3.5.1 Experimental setup

The evaluation of the WCET analysis framework in this section uses bench-

marks from [37], which are generally used for timing analysis. Some salient

features of these benchmarks are listed in Table 3.1.

288 WCET analysis for multi-core platforms

Individual benchmarks are compiled for simplescalar PISA (Portable In-

struction Set Architecture) [10] — a MIPS like instruction set architecture.

Simplescalar gcc cross compiler is used with optimization level -O2 to gen-

erate the PISA compliant binary of each benchmark. The control flow graph

(CFG) of each benchmark is extracted from its PISA compliant binary and

is used as an input to the analysis framework. In the current implementation

of the framework, the analysis frontend (CFG extractor) and the modeling of

pipeline do not appropriately handle recursions, switch cases and un-

structured goto, break statements inside loops. Such programs from [37]

are therefore not included in this evaluation.

To validate the analysis framework, the simplescalar toolset [10] was ex-

tended to support the simulation of shared cache and shared bus. The simula-

tion infrastructure is used to compare the estimated WCET with the observed

WCET. Observed WCET is measured by simulating the program for a few

program inputs. Nevertheless, it is worthwhile to point out that the presence

of a shared cache and a shared bus makes the realization of the worst-case sce-

nario extremely challenging. In the presence of a shared cache and a shared

bus, the worst-case scenario depends on the interleavings of threads, which

are running on different cores. Consequently, the observed WCET result in

the following experiments may highly under-approximate the actual WCET.

For all the experiments, the WCET overestimation ratio is pre-

sented, which is measured as Estimated W CET
Observed W CET

. For each reported over-

estimation ratio, the system configuration during the analysis (which

computes Estimated WCET) and the measurement (which computes

Observed WCET) are kept identical. Unless otherwise stated, the analysis

uses the default system configuration in Table 3.2 (as shown by the column

“Default settings“). Since the data cache modeling is not yet included in the

current implementation, all data accesses are assumed to be L1 cache hits

(for analysis and measurement both). Besides, cache sizes in the default set-

ting are chosen in a fashion to be comparable with the code size mentioned

in Table 3.1.

Two different tasks are used to generate the inter-core conflicts — 1)

jfdctint, which is a single path program and 2) statemate, which

has a huge number of paths. In all experiments (Figures 3.21-3.22), the task

jfdctint is used to generate inter-core conflicts to the first half of the tasks

3.5. Experimental evaluation 289

Table 3.2: Default micro-architectural setting for experiments

Component Default settings Perfect settings

Number of cores 2 NA

1-way, inorder

pipeline 4-entry IFQ, 8-entry ROB NA

L1 instruction 2-way associative, 1 KB All accesses

cache miss penalty = 6 cycles are L1 hit

L2 instruction 4-way associative, 4 KB NA

cache miss penalty = 30 cycles

Shared bus slot length = 50 cycles Zero bus delay

Branch predictor 2 level predictor, L1 size=1 Branch prediction

L2 size=4, history size=2 is always correct

(i.e. matmult to lcdnum). On the other hand, the task statemate is used

to generate inter-core conflicts to the second half of the tasks (i.e. minver to

st). Due to the absence of any infeasible program path, inter-core conflicts

generated by a single path program (e.g. jfdctint) can be more accurately

modeled compared to a multi-path program (e.g. statemate). Therefore,

in the presence of a shared cache, we can expect a better WCET overesti-

mation ratio for the first half of the benchmarks (i.e. matmult to lcdnum)

compared to the second half (i.e. minver to st).

To measure the WCET overestimation due to cache sharing, we can com-

pare the WCET result with two different design choices, where the level 2

cache is partitioned. For a two-core system, two different partitioning choices

are explored: first, each partition has the same number of cache sets but has

half the number of ways compared to the original shared cache (called verti-

cal partitioning). Secondly, each partition has half the number of cache sets

but has the same number of ways compared to the original shared cache

(called horizontal partitioning). In the default configuration, therefore, each

core is assigned a 2-way associative, 2 KB L2 cache in the vertical partition-

ing, whereas each core is assigned a 4-way associative, 2 KB L2 cache in the

horizontal partitioning.

Finally, to pinpoint the source of WCET overestimation, one can selec-

tively turn off the analysis of different micro-architectural components. We

say that an analysis of a micro-architectural component is turned off, if the

290 WCET analysis for multi-core platforms

 0

 10

 20

 30

 40

 50

 0 5 10
 15

 20
 25

 30
 35

 40
 45

%
im

p
ro

v
e
m

e
n
t

time (in seconds)

WCET imrovement in multi-core w.r.t. time

AI+CBMC AI+SPIN AI+KLEE

Figure 3.20: WCET improvement w.r.t. time using statemate as the conflicting task

respective micro-architectural component has perfect setting (refer to the col-

umn “Perfect settings" in Table 3.2).

3.5.2 Basic analysis result

Improvement of precision in shared cache modeling Figure 3.20

captures the evaluation of the shared cache modeling presented in Section

3.1.2. Specifically, it shows the improvement in WCET precision (with re-

spect to analysis time) over the baseline abstract interpretation. Two different

model checkers are used for experiment – SPIN [75] and CBMC [25]. SPIN

is an linear time temporal logic (LTL) based model checker. SPIN can be

used as an exhaustive verifier to check the assertion properties introduced by

the technique discussed in Section 3.1.2. CBMC formally verifies program

through bounded model checking [24]. In the WCET analysis framework,

CBMC is used to check the assertion properties. For symbolic execution,

KLEE [2] toolkit is used to explore the assertions.

Figure 3.20 shows the average improvement in WCET when task

statemate is used to generate inter-core conflicts. Due to the anytime na-

3.5. Experimental evaluation 291

ture, a provably correct WCET can be obtained from any vertical cut along

the time axis in Figure 3.20. Nevertheless, if the refinement process is allowed

more time to run, better precision in WCET can be obtained. We exclude the

detailed evaluation of the shared cache modeling here. Interested readers are

referred to [21] for detailed evaluation.

Effect of caches Figure 3.21(a) shows the WCET overestimation ratio

with respect to different L1 and L2 cache settings in the presence of a per-

fect branch predictor and a perfect shared bus. Results show that the WCET

overestimation ratio has reasonable bound except for a few benchmarks (e.g.

qurt, nsichneu, lcdnum, select). The major source of this overes-

timation is the presence of many infeasible paths in such programs, which

may lead to infeasible micro-architectural states and WCET overestimations.

These infeasible paths can be eliminated by providing additional user con-

straints into the analysis framework and hence improving the ILP-based

WCET calculation. We can also observe that the partitioned L2 caches may

lead to a better WCET overestimation compared to the shared L2 caches, with

the vertical L2 cache partitioning almost always working as the best choice.

The positive effect of the vertical cache partitioning is visible in programs

such as adpcm, ndes and edn, where the overestimations in the presence

of shared L2 caches are higher than the same using partitioned L2 caches.

This is due to the difficulty in modeling the inter-core cache conflicts from

programs being run in parallel (i.e. jfdctint and statemate).

Effect of speculative execution As we explained in Section 3.3.9, the

presence of a branch predictor and speculative execution may introduce addi-

tional computation cycles for executing a mispredicted path. Moreover, spec-

ulative execution may introduce additional cache conflicts from a mispre-

dicted path. The results in Figure 3.21(b) and Figure 3.22(a) show the effect

of speculation in L1 and L2 cache, respectively. qurt and ndes show rea-

sonable increases in the WCET overestimations in the presence of speculation

(Figure 3.21(b) and Figure 3.22(a)). A similar increase in the WCET overes-

timation is also observed with bs and sqrt in the presence of L1 caches

and speculation (Figure 3.21(b)). Such an increase in the overestimation ratio

can be explained from the overestimation arising in the modeling of the ef-

292 WCET analysis for multi-core platforms

 0

 0
.5 1

 1
.5 2

 2
.5 3

 3
.5 4

m
at

m
ul
t

cn
t

fir

fd
ct

ex
pi
nt

qu
rt

ns
ic
hn

eu
bs

cr
c

fib
ca

ll

ja
nn

e_
co

m
pl
ex

lc
dn

um

m
in
ve

r
pr

im
e

se
le
ct

sq
rt

fft

ed
n

lu
dc

m
p

ns

nd
es

bs
or

t1
00

ad
pc

m

st

WCET overestimation ratio (WCET/SIM)

p
e
rf

e
c
t
L
1
 c

a
c
h
e

o
n
ly

 L
1
 c

a
c
h
e

L
1
 c

a
c
h
e
 +

 s
h
a
re

d
 L

2
 c

a
c
h
e

L
1
 c

a
c
h
e
 +

 v
e
rt

ic
a
lly

 p
a
rt

it
io

n
e
d
 L

2
 c

a
c
h
e

L
1
 c

a
c
h
e
 +

 h
o
ri
z
o
n
ta

lly
 p

a
rt

it
io

n
e
d
 L

2
 c

a
c
h
e

 0

 0
.5 1

 1
.5 2

 2
.5 3

 3
.5

m
at

m
ul
t

cn
t

fir

fd
ct

ex
pi
nt

qu
rt

ns
ic
hn

eu
bs

cr
c

fib
ca

ll

ja
nn

e_
co

m
pl
ex

lc
dn

um

m
in
ve

r
pr

im
e

se
le
ct

sq
rt

fft

ed
n

lu
dc

m
p

ns

nd
es

bs
or

t1
00

ad
pc

m

st

WCET overestimation ratio (WCET/SIM)

p
e
rf

e
c
t
p
re

d
ic

to
r

+
 p

e
rf

e
c
t
L
1
 c

a
c
h
e

2
 l
e
v
e
l
p
re

d
ic

to
r

+
 p

e
rf

e
c
t
L
1
 c

a
c
h
e

p
e
rf

e
c
t
p
re

d
ic

to
r

+
 o

n
ly

 L
1
 c

a
c
h
e

2
 l
e
v
e
l
p
re

d
ic

to
r

+

o
n
ly

 L
1
 c

a
c
h
e

(a) (b)

Figure 3.21: (a) Effect of shared and partitioned L2 cache on WCET overestimation, (b) effect

of speculation on L1 cache

3.5. Experimental evaluation 293

fect of speculation on caches (refer to Section 3.3.9). Due to the abstract join

operation to combine the cache states in correct and mispredicted path, some

spurious cache conflicts might be introduced. Nevertheless, the approach for

modeling the speculation effect in cache is scalable and produces tight WCET

estimates for most of the benchmarks.

Effect of shared bus Figure 3.22(b) shows the WCET overestimation in

the presence of a shared cache and a shared bus. We observe that the shared

bus analysis can reasonably control the overestimation due to the shared bus.

Except for a few benchmarks (e.g. edn, nsichneu, ndes, qurt), the over-

estimation in the presence of a shared cache and a shared bus is mostly equal

to the overestimation when the shared bus analysis is turned off (i.e. using

a perfect shared bus). Recall that each overestimation ratio is computed by

performing the analysis and the measurement on identical system configu-

ration. Therefore, the analysis and the measurement both include the shared

bus delay only when the shared bus is enabled. For a perfect shared bus set-

ting, both the analysis and the measurement consider a zero latency for all the

bus accesses. As a result, we also observe that the shared bus analysis might

be more accurate than the analysis of other micro-architectural components

(e.g. in case of nsichneu, expint and fir, where the WCET overes-

timation ratio in the presence of a shared bus might be less than the case

with a perfect shared bus). In particular, nsichneu shows a drastic fall in

the WCET overestimation ratio when the shared bus analysis is enabled. For

nsichneu, the execution time is dominated by shared bus delay, which is

most accurately computed by the shared bus analysis for this benchmark. On

the other hand, we observed in Figure 3.21(a) that the main source of WCET

overestimation in nsichneu is path analysis, due to the presence of many

infeasible paths. Consequently, when shared bus analysis is turned off, the

overestimation arising from path analysis dominates and a high WCET over-

estimation ratio is obtained. Average WCET overestimation in the presence

of both a shared cache and a shared bus is around 50%.

3.5.3 WCET analysis results for FIFO replacement policy

Figure 3.23 demonstrates the WCET analysis results with FIFO replacement

policy. The experimental setup is exactly the same as mentioned in Section

294 WCET analysis for multi-core platforms

 0

 0
.5 1

 1
.5 2

 2
.5 3

 3
.5 4

m
at

m
ul
t

cn
t

fir

fd
ct

ex
pi
nt

qu
rt

ns
ic
hn

eu
bs

cr
c

fib
ca

ll

ja
nn

e_
co

m
pl
ex

lc
dn

um

m
in
ve

r
pr

im
e

se
le
ct

sq
rt

fft

ed
n

lu
dc

m
p

ns

nd
es

bs
or

t1
00

ad
pc

m

st

WCET overestimation ratio (WCET/SIM)

p
e
rf

e
c
t
p
re

d
ic

to
r

+
 L

1
 c

a
c
h
e
 +

 s
h
a
re

d
 L

2
 c

a
c
h
e

2
 l
e
v
e
l
p
re

d
ic

to
r

+
 L

1
 c

a
c
h
e
 +

 s
h
a
re

d
 L

2
 c

a
c
h
e

p
e
rf

e
c
t
p
re

d
ic

to
r

+
 L

1
 c

a
c
h
e
 +

 v
e
rt

ic
a
lly

 p
a
rt

it
io

n
e
d
 L

2
 c

a
c
h
e

2
 l
e
v
e
l
p
re

d
ic

to
r

+
 L

1
 c

a
c
h
e
 +

 v
e
rt

ic
a
lly

 p
a
rt

it
io

n
e
d
 L

2
 c

a
c
h
e

p
e
rf

e
c
t
p
re

d
ic

to
r

+
 L

1
 c

a
c
h
e
 +

 h
o
ri
z
o
n
ta

lly
 p

a
rt

it
io

n
e
d
 L

2
 c

a
c
h
e

2
 l
e
v
e
l
p
re

d
ic

to
r

+
 L

1
 c

a
c
h
e
 +

 h
o
ri
z
o
n
ta

lly
 p

a
rt

it
io

n
e
d
 L

2
 c

a
c
h
e

 0

 0
.5 1

 1
.5 2

 2
.5 3

 3
.5 4

m
at

m
ul
t

cn
t

fir

fd
ct

ex
pi
nt

qu
rt

ns
ic
hn

eu
bs

cr
c

fib
ca

ll

ja
nn

e_
co

m
pl
ex

lc
dn

um

m
in
ve

r
pr

im
e

se
le
ct

sq
rt

fft

ed
n

lu
dc

m
p

ns

nd
es

bs
or

t1
00

ad
pc

m

st

WCET overestimation ratio (WCET/SIM)

p
e
rf

e
c
t
p
re

d
ic

to
r

+
 L

1
 c

a
c
h
e
 +

 s
h
a
re

d
 L

2
 c

a
c
h
e
 +

 p
e
rf

e
c
t
s
h
a
re

d
 b

u
s

p
e
rf

e
c
t
p
re

d
ic

to
r

+
 L

1
 c

a
c
h
e
 +

 s
h
a
re

d
 L

2
 c

a
c
h
e
 +

 s
h
a
re

d
 b

u
s

2
 l
e
v
e
l
p
re

d
ic

to
r

+
 L

1
 c

a
c
h
e
 +

 s
h
a
re

d
 L

2
 c

a
c
h
e
 +

 p
e
rf

e
c
t
s
h
a
re

d
 b

u
s

2
 l
e
v
e
l
p
re

d
ic

to
r

+
 L

1
 c

a
c
h
e
 +

 s
h
a
re

d
 L

2
 c

a
c
h
e
 +

 s
h
a
re

d
 b

u
s

(a) (b)

Figure 3.22: (a) effect of speculation on partitioned and shared L2 caches, (b) effect of shared

bus on WCET overestimation

3.5. Experimental evaluation 295

 0 1 2 3 4 5 6 7 8

m
at

m
ul
t

cn
t

fir

fd
ct

ex
pi
nt

qu
rt

ns
ic
hn

eu
bs

cr
c

fib
ca

ll

ja
nn

e_
co

m
pl
ex

lc
dn

um

m
in
ve

r

pr
im

e

se
le
ct

sq
rt

fft

ed
n

lu
dc

m
p

ns

nd
es

bs
or

t1
00

ad
pc

m

st

FIF
O
/L

R
U

WCET overestimation

p
e
rf

e
c
t
L
1
 c

a
c
h
e

o
n
ly

 L
1
 c

a
c
h
e

L
1
 c

a
c
h
e
 +

 s
h
a
re

d
 L

2
 c

a
c
h
e

L
1
 c

a
c
h
e
 +

 v
e
rt

ic
a
lly

 p
a
rt

it
io

n
e
d
 L

2
 c

a
c
h
e

L
1
 c

a
c
h
e
 +

 h
o
ri
z
o
n
ta

lly
 p

a
rt

it
io

n
e
d
 L

2
 c

a
c
h
e

 0 1 2 3 4 5 6 7 8

m
at

m
ul
t

cn
t

fir

fd
ct

ex
pi
nt

qu
rt

ns
ic
hn

eu
bs

cr
c

fib
ca

ll

ja
nn

e_
co

m
pl
ex

lc
dn

um

m
in
ve

r

pr
im

e

se
le
ct

sq
rt

fft

ed
n

lu
dc

m
p

ns

nd
es

bs
or

t1
00

ad
pc

m

st

FIF
O
/L

R
U

WCET overestimation

p
e
rf

e
c
t
p
re

d
ic

to
r

+
 L

1
 c

a
c
h
e
 +

 s
h
a
re

d
 L

2
 c

a
c
h
e

2
 l
e
v
e
l
p
re

d
ic

to
r

+
 L

1
 c

a
c
h
e
 +

 s
h
a
re

d
 L

2
 c

a
c
h
e

p
e
rf

e
c
t
p
re

d
ic

to
r

+
 L

1
 c

a
c
h
e
 +

 v
e
rt

ic
a
lly

 p
a
rt

it
io

n
e
d
 L

2
 c

a
c
h
e

2
 l
e
v
e
l
p
re

d
ic

to
r

+
 L

1
 c

a
c
h
e
 +

 v
e
rt

ic
a
lly

 p
a
rt

it
io

n
e
d
 L

2
 c

a
c
h
e

p
e
rf

e
c
t
p
re

d
ic

to
r

+
 L

1
 c

a
c
h
e
 +

 h
o
ri
z
o
n
ta

lly
 p

a
rt

it
io

n
e
d
 L

2
 c

a
c
h
e

2
 l
e
v
e
l
p
re

d
ic

to
r

+
 L

1
 c

a
c
h
e
 +

 h
o
ri
z
o
n
ta

lly
 p

a
rt

it
io

n
e
d
 L

2
 c

a
c
h
e

(a) (b)

Figure 3.23: Analysis of cache in the presence of FIFO replacement policy (a) WCET over-

estimation w.r.t. different L2 cache architectures, (b) WCET overestimation in the presence of

FIFO cache and speculative execution

296 WCET analysis for multi-core platforms

 0

 0
.5 1

 1
.5 2

 2
.5

1-
w
ay

, 5
12

 b
yt
es

2-
w
ay

, 5
12

 b
yt
es

1-
w
ay

, 1
 K

B

2-
w
ay

, 1
 K

B

1-
w
ay

, 2
 K

B

2-
w
ay

, 2
KB

1-
w
ay

, 4
 K

B

2-
w
ay

, 4
KB

WCET overestimation ratio (WCET/SIM)

2
 l
e

v
e

l
p

re
d

ic
to

r
+

 o
n

ly
 L

1
 c

a
c
h

e
 +

 p
e

rf
e

c
t

s
h

a
re

d
 b

u
s

2
 l
e

v
e

l
p

re
d

ic
to

r
+

 L
1

 c
a

c
h

e
 +

 s
h

a
re

d
 L

2
 c

a
c
h

e
 +

 p
e

rf
e

c
t

s
h

a
re

d
 b

u
s

2
 l
e

v
e

l
p

re
d

ic
to

r
+

 L
1

 c
a

c
h

e
 +

 v
e

rt
ic

a
lly

 p
a

rt
it
io

n
e

d
 L

2
 c

a
c
h

e
 +

 p
e

rf
e

c
t

s
h

a
re

d
 b

u
s

2
 l
e

v
e

l
p

re
d

ic
to

r
+

 L
1

 c
a

c
h

e
 +

 h
ri
z
o

n
ta

lly
 p

a
rt

it
io

n
e

d
 L

2
 c

a
c
h

e
 +

 p
e

rf
e

c
t

s
h

a
re

d
 b

u
s

2
 l
e

v
e

l
p

re
d

ic
to

r
+

 L
1

 c
a

c
h

e
 +

 s
h

a
re

d
 L

2
 c

a
c
h

e
 +

 s
h

a
re

d
 b

u
s

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

 1
.2

 1
.4

 1
.6

4
-w

a
y
,

4
 K

B
4

-w
a

y
,

8
 K

B
4

-w
a

y
,

1
6

 K
B

4
-w

a
y
,

3
2

 K
B

4
-w

a
y
,

6
4

 K
B

WCET overestimation ratio (WCET/SIM)

2
 l
e

v
e

l
p

re
d

ic
to

r
+

 L
1

 c
a

c
h

e
 +

 s
h

a
re

d
 L

2
 c

a
c
h

e
 +

 p
e

rf
e

c
t

s
h

a
re

d
 b

u
s

2
 l
e

v
e

l
p

re
d

ic
to

r
+

 L
1

 c
a

c
h

e
 +

 v
e

rt
ic

a
lly

 p
a

rt
it
io

n
e

d
 L

2
 c

a
c
h

e
 +

 p
e

rf
e

c
t

s
h

a
re

d
 b

u
s

2
 l
e

v
e

l
p

re
d

ic
to

r
+

 L
1

 c
a

c
h

e
 +

 h
o

ri
z
o

n
ta

lly
 p

a
rt

it
io

n
e

d
 L

2
 c

a
c
h

e
 +

 p
e

rf
e

c
t

s
h

a
re

d
 b

u
s

2
 l
e

v
e

l
p

re
d

ic
to

r
+

 L
1

 c
a

c
h

e
 +

 s
h

a
re

d
 L

2
 c

a
c
h

e
 +

 s
h

a
re

d
 b

u
s

(a) (b)

Figure 3.24: WCET overestimation sensitivity w.r.t. (a) L1 cache sizes and configurations;

(b) L2 cache sizes and configurations

3.5. Experimental evaluation 297

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

 1
.2

 1
.4

 1
.6

1
-w

a
y
,

in
o

rd
e

r
1

-w
a

y
,

o
u

t-
o

f-
o

rd
e

r
2

-w
a

y
,

o
u

t-
o

f-
o

rd
e

r

WCET overestimation ratio (WCET/SIM)

2
 l
e

v
e

l
p

re
d

ic
to

r
+

p

e
rf

e
c
t

L
1

 c
a

c
h

e
2

 l
e

v
e

l
p

re
d

ic
to

r
+

o

n
ly

 L
1

 c
a

c
h

e
 +

 p
e

rf
e

c
t

s
h

a
re

d
 b

u
s

2
 l
e

v
e

l
p

re
d

ic
to

r
+

 L
1

 c
a

c
h

e
 +

 s
h

a
re

d
 L

2
 c

a
c
h

e
 +

 p
e

rf
e

c
t

s
h

a
re

d
 b

u
s

2
 l
e

v
e

l
p

re
d

ic
to

r
+

 L
1

 c
a

c
h

e
 +

v
e

rt
ic

a
lly

 p
a

rt
it
io

n
e

d
 L

2
 c

a
c
h

e
 +

 p
e

rf
e

c
t

s
h

a
re

d
 b

u
s

2
 l
e

v
e

l
p

re
d

ic
to

r
+

 L
1

 c
a

c
h

e
 +

 h
o

ri
z
o

n
ta

lly
 p

a
rt

it
io

n
e

d
 L

2
 c

a
c
h

e
 +

 p
e

rf
e

c
t

s
h

a
re

d
 b

u
s

2
 l
e

v
e

l
p

re
d

ic
to

r
+

 L
1

 c
a

c
h

e
 +

 s
h

a
re

d
 L

2
 c

a
c
h

e
 +

 s
h

a
re

d
 b

u
s

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

 1
.2

 1
.4

 1
.6

 1
.8

2
 c

o
re

,
6

0
 c

y
c
le

s
2

 c
o

re
,

7
0

 c
y
c
le

s
2

 c
o

re
,

8
0

 c
y
c
le

s
4

 c
o

re
,

4
0

 c
y
c
le

s
4

 c
o

re
,

5
0

 c
y
c
le

s
4

 c
o

re
,

6
0

 c
y
c
le

s

WCET overestimation ratio (WCET/SIM)

p
e

rf
e

c
t

p
re

d
ic

to
r

+
 L

1
 c

a
c
h

e
 +

 s
h

a
re

d
 L

2
 c

a
c
h

e
 +

 s
h

a
re

d
 b

u
s

2
 l
e

v
e

l
p

re
d

ic
to

r
+

 L
1

 c
a

c
h

e
 +

 s
h

a
re

d
 L

2
 c

a
c
h

e
 +

 s
h

a
re

d
 b

u
s

(a) (b)

Figure 3.25: WCET overestimation sensitivity w.r.t. (a) pipeline configurations; (b) number

of cores and different bus slot lengths

298 WCET analysis for multi-core platforms

3.5.1. Figure 3.23(a) shows the WCET overestimation ratio in the absence of

speculative execution and Figure 3.23(a) shows the same in the presence of

branch predictor. In general, the analysis framework can reasonably bound

the WCET overestimation for FIFO cache replacement, except for fdct.

Such an overestimation for fdct is solely due to the presence of a FIFO

cache and not due to the presence of cache sharing, as clearly evidenced by

Figure 3.23(a). However, as mentioned in [14], the observed worst-case for

FIFO replacement may highly under-approximate the true worst case due

to the domino effect. Otherwise, results in Figure 3.23(a) show that FIFO is a

reasonably good alternative of LRU replacement even in the context of shared

caches.

Figure 3.23(b) shows that the modeling of the interaction between FIFO

cache and the branch predictor does not much affect the WCET overestima-

tion. As evidenced by Figure 3.23(b), the increase in the WCET overestima-

tion is minimal due to the speculation.

It is worthwhile to mention that the analysis of FIFO caches in a pre-

cise manner is more challenging compared to the analysis of LRU caches.

In Figures 3.23(a)-(b), the less pessimism is potentially attributed to regular

code access patterns and small working sets within loops. For larger working

sets and irregular memory access patterns (e.g. in fdct, select), more so-

phisticated FIFO analyses exist (e.g. [33, 34]), which can further improve the

analysis precision.

3.5.4 WCET analysis sensitivity w.r.t. micro-architectural param-
eters

In this section, we report the WCET overestimation sensitivity with respect

to different micro-architectural parameters. For all the experiments (Figures

3.24-3.25), the reported WCET overestimation denotes the geometric mean

of the term Estimated W CET
Observed W CET

over all the different benchmarks.

The analysis framework is evaluated for different L1 and L2 cache sizes

and configurations (Figure 3.24(a) and Figure 3.24(b), respectively). We ob-

serve that the average WCET overestimation is around 40% (50%) with

respect to different L1 (L2) cache configurations. Figure 3.25(a) presents

the WCET overestimation for different pipeline configurations. Superscalar

pipelines increase the instruction level parallelism and therefore, it also in-

3.5. Experimental evaluation 299

creases the performance of the entire program. However, it also becomes dif-

ficult to model the inherent instruction level parallelism in the presence of su-

perscalar pipelines. Therefore, Figure 3.25(a) shows an increase in the WCET

overestimation with superscalar pipelines. Finally, Figure 3.25(b) shows the

WCET overestimation sensitivity with respect to the number of cores and

different bus slot lengths. For four core experiments, four adjacent programs

are taken (from left to right as shown in Figure 3.21) to run on four different

cores. Figure 3.25(b) reports the geometric mean of WCET overestimation

over all the benchmarks. With very high length of the TDMA round (i.e.

number of cores multiplied by TDMA bus slot length), WCET overestima-

tion normally increases (as shown in Figure 3.25(b)). This is due to the fact

that with higher TDMA round lengths, the search space for possible bus con-

texts (or set of TDMA offsets) increases. As a result, it is less probable to

expose the worst-case scenario in simulation with higher bus slot lengths.

3.5.5 Analysis time

All the experiments have been performed on an 8 core, 2.83 GHz Intel Xeon

machine having 4 GB of RAM and running Fedora Core 4 operating system.

Tables 3.3-3.4 report the maximum analysis time when the shared bus analysis

is disabled and Tables 3.5-3.6 report the maximum analysis time when all

the analyses are enabled (i.e. cache, shared bus and pipeline). Recall from

Section 3.3.2 that the WCET analysis framework is broadly composed of

two different parts, namely, micro-architectural modeling and implicit path

enumeration (IPET) through integer linear programming (ILP). The column

labeled “µ arch” captures the time required for micro-architectural modeling.

On the other hand, the column labeled “ILP” captures the time required for

path analysis through IPET.

In the presence of speculative execution, the number of mispredicted

branches is modeled by integer linear programming [53]. Such an ILP-based

branch predictor modeling, therefore, increases the number of constraints

which need to be considered by the ILP solver. As a result, the ILP solv-

ing time increases in the presence of speculative execution (as evidenced by

the second rows of Tables 3.3 and 3.6).

300 WCET analysis for multi-core platforms

Table 3.3: Analysis time [of nsichneu] in seconds w.r.t. size of shared L2 cache. The first

row represents the analysis time when speculative execution was disabled. The second row

represents the analysis time when speculation was enabled

Shared L2 cache

4 KB 8 KB 16 KB 32 KB 64 KB

µ µ µ µ µ
arch ILP arch ILP arch ILP arch ILP arch ILP

1.2 1.3 1.4 1.3 1.7 1.3 2.3 1.3 4.8 1.2

2.6 240 2.9 240 3.5 238 4.6 238 7 239

Table 3.4: Analysis time [of nsichneu] in seconds w.r.t. pipeline structures. The first row

represents the analysis time when speculative execution was disabled. The second row repre-

sents the analysis time when speculation was enabled

Pipeline

inorder out-of-order superscalar

µ µ µ
arch ILP arch ILP arch ILP

1.3 1.3 1.2 1.3 1.3 1.4

2.6 238 2.4 239 2.8 254

Shared bus analysis increases the micro-architectural modeling time (as

evidenced by Tables 3.5-3.6) and the analysis time usually increases with

the bus slot length. The time for the shared bus analysis generally appears

from tracking the bus context at different pipeline stages. A higher bus slot

length usually leads to a higher number of bus contexts to analyze, thereby

increasing the analysis time.

Tables 3.3-3.6 only present the analysis time for the longest running

benchmark (nsichneu) from the test-suite. For any other program used

in the experiment, the entire analysis (micro-architectural modeling and ILP

solving time) takes around 20-30 seconds on average to finish.

The results reported in Tables 3.3-3.4 show that the ILP-based modeling

of branch predictor usually increases the analysis time. Therefore, for a more

efficient but less precise analysis of branch predictors, one can explore dif-

ferent techniques to model branch predictors, such as abstract interpretation.

Shared bus analysis time can be reduced by using different offset abstractions,

3.6. Data caches and branch target buffers 301

Table 3.5: Analysis time [of nsichneu] in seconds (two-core systems). The first row shows

the analysis time when speculation was disabled. The second row shows the analysis time

when speculation was enabled

Number of cores, TDMA bus slot length

2 core, 60 cycles 2 core, 70 cycles 2 core, 80 cycles

µ µ µ
arch ILP arch ILP arch ILP

128 4 160 4.2 198 5.1

205 158 261 181 363 148

Table 3.6: Analysis time [of nsichneu] in seconds (four-core systems). The first row shows

the analysis time when speculation was disabled. The second row shows the analysis time

when speculation was enabled

Number of cores, TDMA bus slot length

4 core, 40 cycles 4 core, 50 cycles 4 core, 60 cycles

µ µ µ
arch ILP arch ILP arch ILP

199 7.1 228 9.3 257 12.5

373 148 441 165 521 154

such as interval instead of an offset set. Nevertheless, the appropriate choice

of analysis method and abstraction depends on the precision-scalability trade-

off required by the user.

3.6 Data caches and branch target buffers

The modeling of data caches is usually more complicated than instruction

caches. This is due to the fact that different instances of the same instruction

may access different data memory blocks (e.g. array accesses inside a loop,

pointer aliasing). Therefore, the modeling of data caches usually involves an

address analysis phase (e.g. similar to the analysis proposed in [12]). The

output of address analysis is an over-approximation of the set of addresses

accessed by each load/store instruction. Using the results of address analy-

sis, the modeling of data caches has been proposed in [74]. The data cache

modeling proposed in [74] is a must analysis. Therefore, each load/store in-

struction is classified as all-hit (AH) or unclassified (NC). The extension of

302 WCET analysis for multi-core platforms

the basic data cache modeling for multi-level data caches (as well as for uni-

fied caches) has been discussed in [19]. Since the basic technique applied

for such data cache modeling is abstract interpretation, the modeling of data

caches can easily be integrated into the framework (e.g. refer to Equation

3.3 for integration with pipeline and Figure 3.19 for integration with branch

prediction). Therefore, the integration of such data cache modeling into the

framework does not pose any additional challenge. However, a recent ap-

proach ([45]) has shown that a data cache modeling based on address anal-

ysis (e.g. using [12]) may highly overestimate the WCET. To overcome the

imprecision caused due to address analysis, we can compute the set of loop

iterations in which a particular data memory block could be accessed [45].

Such a computation strategy is useful for data accesses, as the data memory

blocks accessed in disjoint loop iterations can never conflict with each other

in the data cache.

Besides accurately estimating the set of data addresses, modeling of data

caches might be challenging for specific write policies, such as write-back.

For write-through caches, the write latency involves accessing the main mem-

ory. Therefore, apart from address analysis, write-through caches do not

pose any additional challenge in WCET analysis. However, for write-back

caches, evicting a memory block might involve variable latencies, depending

on whether the specific block has been modified in the cache. Thus, analysis

of write-back policy needs to precisely estimate the modification history of

different memory blocks in the data cache.

Many modern embedded processors also employ a branch target buffer

(BTB) to cache the target address of a branch. The BTB analysis proposed

in [36] is a combined must and may analysis. Given any branch instruction

address, the analysis proposed in [36] classifies a branch instruction as t (i.e.

the branch instruction must be in the BTB), f (i.e. the branch instruction must

not be in the BTB) or ⊤ (i.e. static analysis cannot determine the inclusion

of the branch instruction in the BTB). Such a classification is analogous to

the classification in the instruction cache analysis. Therefore, given an upper

bound on BTB miss penalty, such a classification can be integrated into the

framework using the technique similar to Equation 3.3. Moreover, the static

analysis of BTB content (as proposed in [36]) can be used in the framework

3.7. A survey of related techniques 303

to determine the speculative instructions and their effects on caches (exactly

in the same fashion as shown in Figure 3.19).

3.7 A survey of related techniques

Performance analysis and predictability of embedded software has been an

active topic of research for several decades. A recent survey article [11] has

discussed several research efforts in the past to build time-predictable em-

bedded systems. Since the inception of multi-core architectures, the research

on performance analysis is gradually focusing its attention towards multi-

core platforms. Analysis of shared caches has been proposed in [85, 39].

These works on shared caches use some variant of abstract interpretation (AI)

based analysis [80] and extend the AI-based analysis for private caches [80]

to shared caches. The work proposed in [85] has two limitations. First, this

work does not exploit task dependencies. Such dependencies may eliminate

some spurious cache conflicts, which might be created between tasks that

can never coexist. This limitation can be solved by techniques discussed in

Section 3.1.2 and Section 3.2.4. Secondly, it does not include any additional

optimization for set-associative caches. This limitation can also be handled

by the methodologies described earlier in this monograph (Section 3.1.2 and

Section 3.2.4).

The impact of shared buses on WCET analysis has also been investigated

by several research communities. The work in [60] proposes a framework

based on abstract interpretation and model checking to analyze embedded

software on multi-core platforms. Timed-automata model checking has been

used to analyze TDMA and first-in-first-out (FIFO) buses. A subsequent work

[30] proposes to use model checking with abstractions. Due to the heavy com-

plexity of model checking, techniques such as [60] cannot scale beyond two

cores [30]. Therefore, several abstractions have been proposed. These ab-

stractions aim to reduce the complexity of model checking for bus analysis

on many-core systems. The work in [73] proposes system-level analysis of

embedded software in the presence of TDMA arbitration policy. A different

work [15] analyzes the timing effects in a ring bus architecture, where multi-

ple in-flight bus transactions may coexist. However, it is worthwhile to note

that the works proposed in [73, 15] are targeted towards schedulability anal-

304 WCET analysis for multi-core platforms

ysis of embedded software, which is performed, in general, after low-level

WCET analysis. WCET analysis in the presence of complex bus topologies

(e.g. mesh, ring and torus) still poses significant research challenges. Finally,

the work in [66] discusses the impact of resource interferences on WCET

for embedded systems using commercial off-the-shelf (COTS) components.

Specifically, the impact of peripheral activities have been investigated. Such

peripheral activities may substantially delay the execution time of a program

by occupying the shared bus.

In summary, WCET analysis in the presence of multi-core platforms (and

hence in the presence of resource sharing) is currently an active area of re-

search. Deriving a safe as well as a precise upper bound on the WCET for

multi-core platforms is challenging. We believe that works presented in this

section will give valuable insights and it will lead to substantial research ac-

tivities in future.

4

WCET optimization for multi-core platforms

In the preceding section, we have described several analysis methodologies

to predict the execution time of embedded software on multi-core platforms.

In this section, we shall explore an orthogonal direction to improve the time-

predictability on multi-core platforms. In the following, we shall primarily

describe a compiler-directed optimization to improve the WCET on multi-

core platforms.

Given any TDMA bus schedule, we have seen the computation of a safe

WCET estimate in the preceding section. This means that the WCET of a task

is directly dependent on the bus schedule. In the subsequent sections, we shall

describe how to generate a bus schedule, while satisfying various efficiency

requirements (previously proposed in [69] and the part of the content in this

section has previously been published in [69, 70]).

4.1 Optimization of worst-case response time

Since the bus schedule is directly affecting the worst-case execution time

of the tasks, and consequently also the worst-case response time (WCRT)

of the application, it is important that it is chosen carefully. Ideally, when

constructing the bus schedule, we would like to allocate a time slot for each

305

306 WCET optimization for multi-core platforms

individual cache miss on the worst-case control flow path, granting access to

the bus immediately when it is requested. There are, however, two significant

problems preventing us from doing this. The first one is that several cores

can issue a cache miss at the same time instant, creating conflicts on the bus.

The second problem is that allocating bus slots for each individual memory

transfer would create a very irregular bus schedule, requiring an unfeasible

amount of memory space on the bus controller.

In order to solve the problem of irregular and memory-consuming bus

schedules, some restrictions on the TDMA round complexity need to be im-

posed. For instance, an efficient strategy is to allow each core to own the

maximum number of slots per round. Other limitations can be to let each

round have the same slot order, or to force the slots in a specific round to

have the same size. In this section, we assume that every core can own at

most one bus slot per round. The slots in a round can have different sizes,

and the order can be set without restrictions. However, it is straight-forward

to adapt this algorithm to more (or less) flexible bus schedule design rules.

In addition to the main algorithm, we discuss a simplified algorithm for the

special case where all slots in a round must be of the same size.

The problem of handling cache miss conflicts is handled using the tech-

nique described in Section 3.2.2. This is done in the inner loop of the overall

approach outlined in Algorithm 3.1. For the optimization process, we shall

first give an outline of the overall approach. A detailed description will fol-

low in subsequent sections.

4.2 WCRT optimization approach

Algorithm 4.1 outlines the overall approach for bus schedule optimiza-

tion. In general, the approach revolves around minimizing a cost function (see

Section 4.3 for details). This cost function, in turn, captures the worst-case

response time (WCRT) of the application as a function of the bus bandwidth

distribution. As far as the bus schedule is concerned, there are primarily two

factors that influence the WCRT of an application:

• The ordering of TDMA slots assigned to each task

• The size of each TDMA slot

4.2. WCRT optimization approach 307

Algorithm 4.1 The optimization approach

1. Define cost function (cf. Section 4.3)

2. Calculate initial slot sizes (cf. Section 4.4.2)

3. Calculate an initial slot order

4. Analyze the WCET of each task τ ∈ Ψ and evaluate the result according to the

cost function

5. Generate a new slot order candidate and repeat from 4 until all candidates are

evaluated (cf. Section 4.4.1)

6. Select the best slot order candidate according to the cost function

7. Generate a new slot size candidate and repeat from 3 until the exit condition is

met (cf. Section 4.4.3)

8. The best configuration according to the cost function is then used

Therefore, in a broader perspective, the optimization approach can be viewed

as searching through the space of different possible slot orderings and slot

sizes. At first, an initial slot size is assigned to each core. This initial selection

is based on an estimation on how the slot size assigned to each core affects the

overall response time (cf. Section 4.4.2). Once an initial selection of slot sizes

is made, the optimization procedure aims to find the best slot ordering for the

given slot size selection. To accomplish this, the process first selects a default

slot ordering and estimates the task τi which maximizes the cost function.

Subsequently, the optimization procedure attempts to find a different slot or-

dering based on the following intuition: since τi is responsible for maximizing

the cost function, it is likely that the cost will reduce if we change the relative

position of the slot assigned to τi in the TDMA round. Based on this intu-

ition, different slot orderings are generated (cf. Section 4.4.1) by swapping

the relative position of the slot assigned to τi with a different position in the

TDMA round. Finally, the best slot ordering is chosen according to the cost

function.

The preceding paragraph outlines the inner optimization loop (lines 4-5

of Algorithm 4.1). The outer optimization loop (lines 3-7 of Algorithm 4.1)

attempts to find the best slot size assigned to each core (cf. Section 4.4.3). In

particular, very large slots assigned to a task may substantially delay other

tasks to access the shared bus. Therefore, it is important to appropriately

adjust the slot sizes. The slot size selection revolves around the estimation

308 WCET optimization for multi-core platforms

of bus bandwidth distribution. Specifically, two bandwidth distributions are

computed:

• From the worst-case execution time (WCET) analysis. This captures

the bus bandwidth that belongs to each core along the worst-case path

of the task running on it. Let us call this bus bandwidth pi for a specific

task τi. Intuitively, pi can be viewed as the demand of bus bandwidth

for τi.

• From the slot size distribution. Let us call this bus bandwidth p′
i for a

specific task τi. Intuitively, p′
i can be viewed as the provision of bus

bandwidth to τi.

For instance, if the slot sizes are distributed as 〈k, 2k, 3k〉 (k being the min-

imum slot size) to three different cores, the bus bandwidth distribution from

the slot size is 〈0.50, 0.33, 0.17〉. The purpose of slot-size selection is to pri-

marily reduce the deviation of bus bandwidth, quantified by p′
i − pi. In other

words, the primary goal of slot-size selection is to balance the provision and

the demand of bus bandwidth. The optimization loop first tries to find the

task having the maximum deviation in bus bandwidth and reduces the slot-

size assigned to the task, one minimum slot-size at a time. For these new slot

sizes, the inner optimization loop attempts to find the best slot ordering, as

described in the preceding paragraph. Finally, this selection of slot ordering

and slot-size continues as long as the time budget for optimization permits

or the resulting solution no longer leads to any improvement in the overall

WCRT.

4.3 Cost function

Recall that in Sections 3.2-3.3, we had discussed analyses of TDMA-based

bus arbitration. For the sake of simplicity, we had restricted our discussion

for a simple TDMA schedule, where each core is assigned a bus slot of the

same length. However the analysis methodologies, as described in the pre-

vious section, also hold for more complex TDMA schedules (e.g. TDMA

schedules described in the following discussion). In the following, we shall

discuss bus schedule optimization for a more general TDMA-based arbitra-

4.3. Cost function 309
C

P
U

1
C

P
U

2

(a) Gantt chart with respect to the NWCET of each task
0 3 11 14 18 21

time

τ
1

τ
2

τ
3

τ
4

τ
5

τ
6

τ
7

Λ

C
P

U
1

C
P

U
2

(b) Gantt chart with optimized bus schedule for τ
2

0 4 15 19 21 22

τ
1

τ
2

τ
3

τ
4

τ
5

τ
6

τ
7

Λ

7 12

Λ+Δ

8

C
P

U
1

C
P

U
2

(c) Gantt chart with optimized bus schedule for τ
1

0 4 14 17 21 24

τ
1

τ
2

τ
3

τ
4

τ
5

τ
6

τ
7

Λ

6 9

Λ+Δ

time

time

time

time

time

Figure 4.1: Estimating the response time

tion method. Nevertheless, the WCET analysis can be carried out analogous

to the approach discussed in the previous section.

Given a set of active tasks τi ∈ Ψ, the goal is now to generate a close

to optimal bus segment schedule with respect to Ψ. The optimal bus sched-

ule is a bus schedule taking into account the global context, minimizing the

response time of the application. This response time includes tasks not yet

considered and for which no bus schedule has been defined. This requires

knowledge about future tasks, not yet analyzed, and, therefore, we must find

ways to approximate their influence on the response time.

In order to estimate the response time, we need to build a schedule Sλ of

the tasks not yet analyzed, using a list scheduling technique. When building

Sλ the WCET of each task is approximated by its respective worst-case ex-

ecution time in the naive case, where no conflicts occur on the bus and any

task can access the bus at any time. From now on we refer to this conflict-free

WCET as NWCET (Naive Worst-Case Execution Time).

When optimizing the bus schedule for the tasks τ ∈ Ψ, we need an ap-

proximation of how the WCET of one task τi ∈ Ψ affects the response time.

310 WCET optimization for multi-core platforms

Let Di be the union of the set of all tasks depending directly on τi in the pro-

cess graph, and the singleton set containing the first task in Sλ that is sched-

uled on the same core as τi. We now define the tail λi of a task τi recursively

as:

• λi = 0, if Di = ∅

• λi = max
τj∈Di

(xj + λj), otherwise.

where xj = NWCETj if τj is a computation task. For communication tasks

(i.e. message passing between two computation tasks), xj is an estimation of

the communication time, depending on the length of the message. Intuitively,

λi can be seen as the length of the longest (with respect to the NWCET)

chain of tasks that are affected by the execution time of τi. Without any loss

of generality, in order to simplify the presentation, only computation tasks are

considered in the examples of this section. Consider Figure 4.1a, illustrating

a Gantt chart of tasks scheduled according to their NWCETs. Direct data

dependencies exist between tasks τ4 & τ5, τ5 & τ6, and τ5 & τ7; hence, for

instance, D3 = {τ5} and D4 = {τ5, τ7}. The tails of the tasks are: λ7 =

λ6 = 0 (since D7 = D6 = ∅), λ5 = 7, λ4 = λ3 = 10, λ2 = 18 and λ1 = 15.

Since the main concern when optimizing the bus schedule for the tasks

in Ψ is to minimize the response time, a cost function taking λi into account

can be formulated as follows:

CΨ,θ = max
τi∈Ψ

(θ + WCETθ
i + λi) (4.1)

where WCETθ
i is defined as the length of that portion of the worst case exe-

cution path of task τi which is executed after time θ.

4.4 Optimization algorithm

In this Section, we shall describe the different components of Algorithm 4.1

in detail.

4.4.1 Slot order selection

At step 4 of Algorithm 4.1, a default initial order is set. When step 5 is reached

for the first time, after calculating a cost for the current slot configuration, the

4.4. Optimization algorithm 311

task τi ∈ Ψ that is maximizing the cost function in Equation 4.1 is identified.

Subsequently, n−1 new bus schedule candidates are constructed, n being the

number of tasks in the set Ψ, by moving the slot corresponding to this task

τi, one position at a time, within the TDMA round. It is important to note

that only the relative position of the bus slot corresponding to τi is swapped

with a different position. Therefore, if τi is assigned to core ci and the initial

slot ordering belongs to three cores in the order ci−1 → ci → ci+1, two

different slot orderings are generated, namely ci−1 → ci+1 → ci and ci →

ci−1 → ci+1. Since τi is maximizing the cost function defined in Equation

4.1, the intuition is that a different relative position of the slot corresponding

to τi will most likely reduce the cost of τi and hence will reduce the overall

cost. Once all n − 1 slot orderings are generated, the best slot ordering with

respect to the cost function is selected. Next, we need to check if any new

task τj , different from τi, now has taken over the role of maximizing the cost

function. If so, the procedure of slot ordering selection is repeated, otherwise

it is terminated.

4.4.2 Determination of initial slot sizes

At step 2 of Algorithm 4.1, the initial slot sizes are dimensioned based on

an estimation of how the slot size of an individual task τi ∈ Ψ affects the

response time.

Consider λi, as defined in Section 4.3. Since it is a sum of the NWCETs

of the tasks forming the tail of τi, it will never exceed the sum of WCETs of

the same sequence of tasks. Consequently, for all τi ∈ Ψ define

Λ = max
τi∈Ψ

(NWCETθ
i + λi) (4.2)

where NWCETθ
i is the NWCET of task τi ∈ Ψ counting from time θ, a lower

limit of the response time can be calculated by θ + Λ. This is illustrated in

Figure 4.1a, for θ = 0. Furthermore, let us define ∆ as the amount by which

the estimated response time increases due to the time each task τi ∈ Ψ has to

wait for the bus.

See Figure 4.1c for an example. Contrary to Figure 4.1a, τ1 and τ2 are

now considered using their real WCETs, calculated according to a particular

bus schedule (Ψ = {τ1, τ2}). The corresponding expansion ∆ is 3 time units.

Now, in order to minimize ∆, we want to express a relation between the

312 WCET optimization for multi-core platforms

τ
1

0

τ
2

0

δ
1
=32 k

(a) The anatomy of a task

δ
2
=30 δ

3
=25 δ

4
=28

δ'
1
=32 δ'

2
=30 δ'

3
=25

(b) The anatomy of a subtask

λ'
2

τ'
2

Θ
2

time

time

Figure 4.2: Close-up of two tasks

response time and the bus schedule. For task τi ∈ Ψ, we define mi as the

number of remaining cache misses on the worst case path, counting from

time θ. Similarly, also counting from θ, li is defined as the execution time on

processor and can thus be seen as the length (in terms of execution time) of

the task minus the time it spends using the bus or waiting for it (both mi and

li are determined by the WCET analysis). Hence, if we define the constant k

as the time it takes to process a cache miss when ignoring bus conflicts, we

get

NWCETθ
i = li + mik (4.3)

As an example, consider Figure 4.2a showing a task execution trace, in the

case where no other tasks are competing for the bus. A black box represents

the idle time, waiting for the transfer, due to a cache miss, to complete. In this

example m1 = 4 and l1 = δ1 + δ2 + δ3 + δ4 = 115.

Let us now, with respect to the particular bus schedule, denote the aver-

age waiting time of task τi by di. That is, di is the average time task τi spends

waiting, due to other cores owning the bus and the actual time of the transfer

itself, every time a cache miss has to be transferred on the bus. Then, analo-

gously to Equation 4.3, the WCET of task τi, counting from time θ, can be

calculated as

WCETθ
i = li + midi (4.4)

4.4. Optimization algorithm 313

The dependency between a set of average waiting times di and a bus schedule

can be modeled as follows. Consider the distribution P, defined as the set

p1, . . . , pn, where
∑

pi = 1. The value of pi represents the fraction of bus

bandwidth that, according to a particular bus schedule, belongs to the core

running task τi ∈ Ψ. Given this model, the average waiting times can be

rewritten as

di =
1

pi
k (4.5)

If pi = 1, the core running task τi ∈ Ψ has the full bus bandwidth and there-

fore, it will not suffer any additional bus delay. As observed from Equation

4.5, every cache miss will suffer the constant cache miss delay k, if full bus

bandwidth is allocated to the respective core. If pi < 1, we get di > k,

capturing the additional waiting time to access the shared bus.

Putting Equations 4.2, 4.4, and 4.5 together and noting that Λ has been

calculated as the maximum over all τi ∈ Ψ, we can formulate the following

system of inequalities:

θ + l1 + m1
1

p1
k + λ1 ≤ θ + Λ + ∆

...

θ + ln + mn
1

pn
k + λn ≤ θ + Λ + ∆

p1 + · · · + pn = 1

What we want is to find the bus bandwidth distribution P that results in the

minimum ∆ satisfying the above system. Unfortunately, solving this system

is difficult due to its enormous solution space. However, an important obser-

vation that simplifies the process can be made, based on the fact that the slot

distribution is represented by continuous variables p. Consider a configura-

tion of p1, . . . , pn, ∆ satisfying the above system, and where at least one

of the inequalities is not satisfied by equality. We say that the corresponding

task τi is not on the critical path with respect to the schedule, meaning that its

corresponding pi can be decreased, causing τi to expand over time without af-

fecting the response time. Since the values of p must sum to 1, decreasing pi,

allows for increasing the percentage of the bus given to the tasks τ that are on

the critical path. Even though the decrease might be infinitesimal, this makes

314 WCET optimization for multi-core platforms

the critical path shorter, and thus ∆ is reduced. Consequently the smallest ∆

that satisfies the system of inequalities is achieved when every inequality is

satisfied by equality. As an example, consider Figure 4.1c and note that τ5 is

an element in both sets D3 and D4 according to the definition in Section 4.3.

This means that τ5 is allowed to start first when both τ3 and τ4 have finished

executing. Secondly, observe that τ5 is on the critical path, thus being a direct

contributor to the response time. Therefore, to minimize the response time,

we must make τ5 start as early as possible. In Figure 4.1c, the start time of

τ5 is defined by the finishing time of τ4, which also is on the critical path.

However, since there is a block of slack space between τ3 and τ5, we can re-

duce the execution time of τ2 and thus make τ4 finish earlier, by distributing

more bus bandwidth to the corresponding core. This will make the execution

time of τ1 longer (since it receives less bus bandwidth), but as long as τ3 ends

before τ4, the response time will decrease. However, if τ3 expands beyond

the finishing point of τ4, the former will now be on the critical path instead.

Consequently, making task τ3 and τ4 end at the same time, by distributing

the bus bandwidth such that the sizes of τ1 and τ2 are adjusted properly, will

result in the earliest possible start time of τ5, minimizing ∆. In this case the

inequalities corresponding to both τ1 and τ2 are satisfied by equality. Such a

distribution is illustrated in Figure 4.1b.

The resulting system consists of n + 1 equations and n + 1 variables (p1,

. . . , pn and ∆), meaning that it has exactly one solution, and even though it is

nonlinear, it is simple to solve. Using the resulting distribution, a correspond-

ing initial TDMA bus schedule is calculated by setting the slot sizes to values

proportional to P .

4.4.3 Generation of new slot-size candidates

One of the possible problems with the slot sizes defined as in Section 4.4.2

is the following: if one core gets a very small share of the bus bandwidth, the

slot sizes assigned to the other cores can become very large, possibly resulting

in long wait times. By reducing the sizes of the larger slots while trying to

keep their mutual proportions, this problem can be avoided.

Let us first consider an example where a round, consisting of three slots,

are ordered as in Figure 4.3a. The slot sizes have been dimensioned accord-

ing to a bus distribution P = {0.49, 0.33, 0.18}, calculated using the method

4.4. Optimization algorithm 315

CPU1

CPU2

CPU3

(a)

(b)

(c)

Figure 4.3: Calculation of new slot sizes

in Section 4.4.2. The smallest slot, belonging to CPU 3, has been set to the

minimum slot size k, and the remaining slot sizes are dimensioned propor-

tionally 1 as multiples of k. Consequently, the initial slot sizes become 3k,

2k and k. In order to generate the next set of candidate slot sizes, we define

P ′ as the actual bus distribution of the generated round. Considering the ac-

tual slot sizes, the bus distribution becomes P ′ = {0.50, 0.33, 0.17}. Since

very large slots assigned to a certain core can introduce long wait times for

tasks running on other cores, we want to decrease the size of slots, but still

keep close to the proportions defined by the bus distribution P . Consider once

again Figure 4.3a. Since, p′
1 − p1 > p′

2 − p2 > p′
3 − p3, we conclude that slot

1 has the maximum deviation from its supposed value. Hence, as illustrated

in Figure 4.3b, the size of slot 1 is decreased one unit. This slot size con-

figuration corresponds to a new actual distribution P ′ = {0.40, 0.40, 0.20}.

Now p′
2 − p2 > p′

3 − p3 > p′
1 − p1, hence the size of slot 2 is decreased

one unit and the result is shown in Figure 4.3c. Note that in the next iteration,

p′
3 − p3 > p′

1 − p1 > p′
2 − p2, but since slot 3 cannot be further decreased,

we recalculate both P and P ′, now excluding this slot. The resulting sets are

P = {0.60, 0.40} and P ′ = {0.67, 0.33}, and hence slot 1 is decreased one

unit. From now on, only slots 1 and 2 are considered, and the remaining pro-

cedure is carried out in exactly the same way as before. When this procedure

is continued as above, all slot sizes will converge towards k which, of course,

is not the desired result. Hence, after each iteration, the cost function (Equa-

1In practice, slot sizes are usually multiples of the minimum slot size k to avoid unneces-

sary slack on the bus.

316 WCET optimization for multi-core platforms

tion 4.1) is evaluated and the process is continued only until no improvement

is registered for a specified number π of iterations. The best slot sizes (with

respect to the cost function) are, finally, selected. Accepting a number of steps

without improvement makes it possible to escape certain local minima2.

4.4.4 Density regions

A problem with the technique presented above is that it assumes that the cache

misses are evenly distributed throughout the task. We call this distribution

of cache misses along the task execution as the cache miss structure. For

most tasks, the cache misses are not evenly distributed throughout the task

execution. A solution to this problem is to analyze the internal cache miss

structure of the actual task and, accordingly, divide the worst-case path into

disjoint intervals, so called densityregions. A density region is defined as an

interval of the path where the distance between consecutive cache misses (δ

in Figure 4.2) does not differ more than a specified number. In this context,

if we denote by α the average time between two consecutive cache misses

(inside a region), the density of a region is defined as 1
α+1 . A region with

high density, close to 1, has very frequent cache misses, while the opposite

holds for a low-density region.

Consequently, in the beginning of the optimization loop, we identify the

next density region for each task τi ∈ Ψ. Now, instead of constructing a bus

schedule with respect to each entire task τi ∈ Ψ, only the interval [θ..Θi) is

considered, with Θi representing the end of the density region. We call this

interval of the task a subtask since it will be treated as a task of its own. Figure

4.2b shows a task τ2 with two density regions, the first one corresponding

to the subtask τ ′
2. The tail of τ ′

2 is calculated as λ′
2 = λ′′

2 + λ2, with λ′′
2

being defined as the NWCET of τ2 counting from Θ2. Furthermore, in this

particular example m′
2 = 3 and l′2 = δ′

1 + δ′
2 + δ′

3 = 87.

Consider Algorithm 3.1 illustrating the overall approach. Analogous to

the case where the entire tasks are analyzed, when a bus schedule for the

current bus segment has been decided, θ′ will be set to the finish time of the

first subtask. Just as before, the entire procedure is then repeated for θ = θ′.

However, modifying the bus schedule can cause the worst-case control

flow path to change. Therefore, the entire cache miss structure can also

2In experiments the range 8 < π < 40 is used, depending on the number of cores

4.4. Optimization algorithm 317

change during the optimization procedure (lines 4 and 5 in Algorithm 4.1), re-

sulting in possible changes with respect to both subtask density and size. This

problem is solved by using an iterative approach, adapting the bus schedule to

possible changes of the subtask structure while making sure that the total cost

is decreasing. This procedure will be described in the following paragraphs.

Subtask evaluation

First, let us in this context define two different cost functions, both based on

Equation 4.1. Let τ
′end
i be the end time of subtask τ ′

i , and define τ
′end as:

τ
′end = min

τi∈Ψ
(τ

′end
i) (4.6)

Furthermore, let NWCETτ
′end

i be the NWCET of the task τi, counting

from τ
′end to the end of the task. The subtask cost C

′

Ψ,θ can now be defined

as:

C
′

Ψ,θ = max
τi∈Ψ

(τ
′end + NWCETτ

′end

i + λi) (4.7)

Hence, the subtask cost is a straight-forward adaption of the cost function in

Equation 4.1 to the concept of subtasks. Instead of using the worst-case exe-

cution time of the entire task, only the part corresponding to the first density

region after time θ is considered. The rest of the task, from the end of the first

density region to the end of the entire task, is accounted for in the tail, with

respect to its corresponding NWCET.

In order to more accurately approximate how the subtask affects the

worst-case response time, its complementary task cost C
′′

Ψ,θ is introduced

in addition to the subtask cost. Let WCETτ
′end

i be the worst-case execution

time of task τi starting from time τ
′end. We here assume that WCETτ

′end

i has

been calculated with respect to a tailored bus segment, starting after τ
′end.

The bus schedule representing this bus segment is calculated considering the

cache miss structure of the corresponding part of the task, for instance by us-

ing the algorithm described in Section 4.4.2 for calculating initial slot sizes.

This way we can approximate the transfer delays of the cache misses between

τ
′end and the end of the task, instead of using the corresponding NWCET (as

318 WCET optimization for multi-core platforms

is done when calculating the subtask cost). The complementary task cost can

be defined as:

C
′′

Ψ,θ = max
τi∈Ψ

(τ
′end + WCETτ

′end

i + λi) (4.8)

Note that the only difference between this cost function and the previous

one in Equation 4.7 is that we now use a calculated WCET for the remaining

part of the task, instead of the NWCET. Consequently, the complementary

task cost is always greater than or equal to the subtask cost. The problem

with using the NWCET, as done when calculating the subtask cost, is that

small subtasks tend to be favored. The complementary cost is more precise,

but also more time-consuming to calculate. Therefore the idea is to use it only

when necessary.

With the two cost functions defined, we can now formulate an algorithm

for subtask evaluation, as presented in Algorithm 4.2. In step 2, the tasks

τi ∈ Ψ are analyzed, in their entirety, in order to achieve an initial cache miss

structure. This structure is then used to identify the first subtask τ ′
i of each task

(step 3), and to calculate an initial bus schedule (step 4). In order to evaluate

the bus schedule, the complementary cost is evaluated in step 5. In step 8, the

bus schedule is modified with respect to the subtasks τi. The algorithms to

change the slot sizes and order of the current TDMA round, used for these

modifications, can be found in Section 4.4.3 and Section 4.4.1. In step 9, the

first corresponding subtask τ ′
i of each task τi ∈ Ψ is reidentified with respect

to the new cache miss structure, and an updated cost is calculated (by using

the less expensive subtask cost function). If this cost is an improvement of

the previous cost3, we can also evaluate the complementary cost C
′′

Ψ,θ. If the

new complementary cost is lower than the best cost Cbest
inner found so far in the

inner loop, we can update Cbest
inner to this new lowest cost.

We then try to modify the bus schedule further until no more improve-

ments are found (steps 8-12). Consequently, reaching step 13 means two

things. Either we have found the best bus schedule, or the worst-case con-

trol flow path has changed during the iterations, resulting in a different cache

miss structure, not suitable for the generated bus schedule (again, note that

3In the opposite case, for which no improvement of the cost was made, there is no need to

calculate C
′′

Ψ,θ since C
′

Ψ,θ < C
′′

Ψ,θ .

4.5. Simplified algorithm 319

Algorithm 4.2 Subtask evaluation algorithm

1. Set Cbest
outer = ∞

2. Calculate initial slot sizes with respect to all tasks τi ∈ Ψ
3. For each task τi ∈ Ψ, calculate the WCET and identify the corresponding first

subtask τ ′

i

4. Calculate the initial slot sizes with respect to the subtasks τ ′

i

5. Calculate the complementary task cost C
′′

Ψ,θ

6. If C
′′

Ψ,θ < Cbest
outer, set Cbest

outer = C
′′

Ψ,θ

7. Set Cbest
inner = Cbest

outer

8. Modify the bus schedule with respect to the cache miss structure of τ ′

i

9. Once again, for each task τi ∈ Ψ, calculate the WCET and identify the first

corresponding subtask τ ′

i

10. Calculate the subtask cost C
′

Ψ,θ

11. If C
′

Ψ,θ < Cbest
inner, calculate the complementary task cost C

′′

Ψ,θ and, if C
′′

Ψ,θ <

Cbest
inner, set Cbest

inner = C
′′

Ψ,θ

12. Repeat from 9 until no improvements have been made for N iterations

13. If Cbest
inner < Cbest

outer then set Cbest
outer = Cbest

inner and goto 4

14. Use the bus schedule corresponding to Cbest
outer for the interval between θ and the

end time of the subtask that finished first, and update θ to this end time

the steps 8-12 try to improve the initial sizes calculated, with respect to a

specific density, in step 4). If Cbest
inner = Cbest

outer, we did not manage to improve

the existing best cost from the last time the inner loop was visited, and the

algorithm is halted. If Cbest
inner < Cbest

outer, on the other hand, we identify new

subtasks with respect to the improved bus schedule (step 3), and repeat the

procedure. It is worthwhile to note that Algorithm 4.2 will always converge

towards a solution. This is because the algorithm never accepts solutions that

lead to higher costs.

4.5 Simplified algorithm

For the case where all slots of a round have to be of the same, round-specific

size, calculating the distribution P makes little sense. Therefore, we discuss

a simpler, but quality-wise equally efficient algorithm, tailor-made for this

class of more limited bus schedules. The slot ordering mechanisms are still

the same as for the main algorithm, but the procedures for calculating the slot

sizes are now vastly simplified. Algorithm 4.3 shows the overall process.

320 WCET optimization for multi-core platforms

Algorithm 4.3 The simplified optimization approach

1. Initialize the slot sizes to the minimum size k
2. Calculate an initial slot order

3. Analyze the WCET of each task τ ∈ Ψ and evaluate the result according to the

cost function

4. Generate a new slot order candidate and repeat from 3 until all candidates are

evaluated

5. Increase the slot sizes one step

6. If no improvements were achieved during a specified number of iterations then

exit. Otherwise repeat from 2

7. The best configuration according to the cost function is then used

In step 1 of this algorithm, we can start by using the smallest possible slot

size, since this will minimize the maximum transfer delay. Next, an initial slot

order, chosen arbitrarily, is specified in step 2. The slot order candidates are

then generated just as in the general algorithm, by changing the position of

the slot belonging to the core on the critical path. After finding the best order

for a particular slot size, the latter is modified by, for instance, increasing it

k steps. After an appropriate slot size is found, it can also be “fine tuned" by

increasing or decreasing the size by a very small amount, less than k. Since all

cores get the same amount of bus bandwidth, the concept of density regions

is not useful in this simplified approach.

4.6 Memory consumption

A TDMA bus schedule is usually composed of segments. Therefore, the

amount of memory space needed to store the bus schedule is defined by the

number of segments and the complexity restrictions imposed, by the system

designer, on the underlying TDMA rounds. In order to calculate an upper

bound on the number of segments needed, we make the observation that a

new segment is created at every time t when at least one task starts or fin-

ishes. For the case when density regions are not used, these are also the only

times when a new segment will be created. Hence, an upper bound on the

number of segments is 2|Π|, where Π is the set of all tasks.

When using density regions, the start and finish of every region can result

in a new segment each. Therefore, tasks divided into very many small density

4.7. Experimental results 321

regions will result in bus schedules consuming a lot of memory. A straight-

forward solution is to limit, according to the available controller memory,

the minimum size of a density region. For instance, if the minimum density

region size for a task τi is x% of the task length li as defined above, the

number of generated segments becomes at most 2|Π|100
x

.

4.7 Experimental results

The complete flow illustrated in Figure 3.1 has been implemented and used

as a platform for the experiments presented in this section. The bus schedule

synthesis was carried out on a general purpose PC with a dual core Pentium 4

processor, running at 2.8 GHz. A system-on-chip design, consisting of several

ARM7 cores, is assumed for the worst-case execution time analysis. For these

examples, we have assumed that cache miss penalty is 12 clock cycles.

4.7.1 Bus schedule approaches

To evaluate the optimization algorithms, four bus schedule approaches of

varying complexity are defined. The least restrictive approach, BSA1, im-

poses no restrictions at all and is therefore mostly of interest for compar-

isons with the other approaches. Since there is no requirement for regularity,

a BSA1 schedule is composed of only one segment, consisting of a (very

complex) round having the same size as the segment itself. Each core can

own any number of slots of different sizes, and the order of the slots is arbi-

trary. An example of a BSA1 bus schedule and its table representation can be

found in Figure 4.4.

With the more restrictive BSA2, each core can own at most one bus slot

per round. However, the slots in a round can still have different sizes, and the

order can be set arbitrarily. Imposing this restriction on the round dramatically

decreases the memory needed to store the bus schedule, since the regularity

can be used to store it in an efficient fashion. An example of a BSA2 bus

schedule is depicted in Figure 4.5. The first segment starts at time unit 0 and

ends at time unit 60, immediately followed by the second segment. The main

algorithm in this section assumes that a BSA2 bus schedule is used.

BSA3 is as BSA2 but with the additional restriction that all slots in a

round must be of the same size, regardless of owner. This further decreases

322 WCET optimization for multi-core platforms

0 10

Slot start Owner

0 CPU1

10 CPU2

40 CPU1

60 CPU2

70 CPU1

40 60

...Bus

Slot belonging to CPU1

Slot belonging to CPU2

... ...

70

Figure 4.4: BSA1 bus schedule

the amount of memory required on the bus arbiter, since only one size has

to be stored for each round, regardless of the number of slots. The order is,

however, still arbitrary, just as for BSA2. An example is illustrated in Figure

4.6. The simplified algorithm explained in this section operates on BSA3 bus

schedules.

Let us define a fourth approach, BSA4, which is as BSA3 but with the

very strong restriction of allowing only bus schedules constituted by one seg-

ment (and thus one round). This requires almost no memory at all on the

bus arbiter. Since this approach is extremely limited, it is interesting mostly

for comparisons with the other approaches, just as for BSA1. An example is

shown in Figure 4.7

4.7.2 Synthetic benchmarks

The first set of experiments was done using benchmarks consisting of ran-

domly generated task graphs with 50 to 200 tasks. The individual tasks were

generated according to control flow graphs extracted from various C pro-

grams, such as algorithms for sorting, searching, matrix multiplication and

DSP processing. Experiments were run for configurations consisting of 2 to

4.7. Experimental results 323

0 10

Slot sizeOwner

10CPU1

20CPU2

10CPU2

10CPU1

......

30 40

...Bus

Slot belonging to CPU1

Slot belonging to CPU2

60 70 80 90 100

Segment start

0

60

...

Figure 4.5: BSA2 bus schedule

10 cores, and for each configuration, 50 randomly generated task graphs were

used and an average WCRT was calculated.

For comparison, this set of experiments was carried out using each of the

four bus scheduling approaches defined in Section 4.7.1. In addition, to use

as a baseline for evaluating the optimization algorithms, the WCRT was also

calculated assuming immediate access to the bus for all cores, resulting in

no memory access being delayed. Note that this is an unrealistic assumption,

even for a hypothetical optimal bus schedule, resulting in optimistic and un-

safe results. This would also be the result obtained from traditional WCET

analysis techniques which do not model shared buses.

The result of experiments is depicted in Figure 4.8. The diagram corre-

sponding to each bus scheduling approach represents how many times larger

the respective average WCRT is, in relation to the baseline. As can be seen,

not surprisingly, BSA1 produces the shortest worst-case response times. This

is expected, since the corresponding bus schedules have no restrictions with

respect to flexibility. The results produced by BSA2 and BSA3 are, how-

ever, not at all far behind. This shows that the price for obtaining regular bus

schedules, which can be fitted into memories with a relatively small capacity,

is very low. The poor flexibility provided by BSA4, on the other hand, is not

enough, and for large bus schedules, the results become inferior.

324 WCET optimization for multi-core platforms

0 10

Slot sizeOwner

10
CPU2

CPU1

20
CPU1

CPU2

......

20 30

...Bus

Slot belonging to CPU1

Slot belonging to CPU2

40 60 80 100 120

Segment start

0

40

...

Figure 4.6: BSA3 bus schedule

0 20

Slot sizeOwner

20
CPU2

CPU1

...Bus

Slot belonging to CPU1

Slot belonging to CPU2

40 60 80 100 120

Segment start

0

Figure 4.7: BSA4 bus schedule

In a second set of experiments, BSA2 and BSA3 bus scheduling ap-

proaches are compared, since they are the important alternatives from a prac-

tical viewpoint. In particular, it is interesting to see the efficiency of these

policies for applications with different cache miss patterns. A cache miss

pattern of a particular task is, in this context, characterized by the standard

deviation of the set of time-intervals between all consecutive cache misses.

Three classes of applications, each one representing a different level of cache

miss irregularity, were created. Every application was composed, according

to a randomized task graph, by 20 randomly generated tasks, and each class

4.7. Experimental results 325

1 2 3 4 5 6 7 8 9 10

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

BSA1

BSA2

BSA3

BSA4

Number of Processors

N
o
rm

a
liz

e
d
 S

c
h
e
d
u
le

 L
e
n
g
th

Figure 4.8: Comparison of the four bus access policies

contained 30 applications. For all tasks, the average distance between con-

secutive caches misses was 73 clock cycles.

The first class of applications was generated with a uniformly distributed

cache miss pattern, corresponding to a standard deviation of 0 clock cycles.

The other two classes had a more irregular cache miss structure, correspond-

ing to standard deviations of 50 and 150 clock cycles, respectively. Just as

for the previous set of examples, the unsafe traditional case, where no core

ever has to wait for the bus, is used as a baseline. A comparison of the result-

ing average worst-case response times is shown in Figure 4.9. It is expected

that the two approaches produce the same worst-case response times for very

regular cache miss structures since, most of the time, all cores will demand

an equal amount of bus bandwidth. However, as the irregularity of the cache

miss structure increases, the ability of BSA2 to distribute the bandwidth more

freely becomes more and more of an advantage.

A third set of experiments were carried out, demonstrating the efficiency

of the successive steps of the main bus access optimization algorithm. The

same three classes of applications were used as for the previous set, as well

as the same baseline. The results are presented in Figure 4.10. The ISS bar

326 WCET optimization for multi-core platforms

0 50 150

1

1,1

1,2

1,3

1,4

1,5

1,6

BSA3

BSA2

Standard Deviation

N
o
rm

a
liz

e
d

 S
c
h

e
d

u
le

 L
e
n

g
th

Figure 4.9: Comparison between BSA2 and BSA3

represents the average worst-case response time obtained using the initial slot

sizes, calculated as described in Section 4.4.2. The SSA bar corresponds to

the average WCRT after slot size adjustments, as described in Section 4.4.3,

have been performed as well. Finally, the DS bar shows the result of also

applying the concept of density regions, according to Section 4.4.4, in addi-

tion to the previous two steps. As expected, density regions are efficient for

irregular cache miss patterns, but do not help if the structure is uniformly

distributed.

The execution time, for the whole flow, of an example consisting of 100

tasks on 10 cores is 120 minutes for the BSA2 algorithm and 5 minutes for

the simplified BSA3 version.

In order to validate the real-world applicability of this approach, a smart

phone design has been analyzed. It consists of a GSM encoder, GSM decoder

and an MP3 decoder, mapped on four ARM7 cores. The GSM encoder and

decoder are mapped on one core each, whereas the MP3 decoder is mapped

on two cores. The software applications have been partitioned into 64 tasks,

and the size of one such task is between 70 and 1304 lines of C code for the

GSM codec, and 200 and 2035 lines for the MP3 decoder. We have assumed

a 4-way set associative instruction cache with a size of 4 kilobytes and a di-

rect mapped data cache of the same size. The worst-case response time was

4.8. A survey of related techniques 327

0 50 150

1

1,1

1,2

1,3

1,4

1,5

1,6

1,7

1,8

ISS

SSA

DS

Standard Deviation

N
o
rm

a
liz

e
d

 S
c
h

e
d

u
le

 L
e
n

g
th

Figure 4.10: BSA2 optimization steps

BSA1 BSA2 BSA3 BSA4

1.17 1.31 1.33 1.62

Table 4.1: Results for the smart phone

calculated using the four bus scheduling approaches defined in Section 4.7.1.

For comparison, WCRT is also calculated assuming, unrealistically, imme-

diate access to the bus for each core, as done by traditional WCET analysis

techniques. Table 4.1 shows, for each of the four bus scheduling approaches,

how many times larger the obtained safe worst-case response time is com-

pared to the unrealistic counterpart. As can be seen, the results are coherent

with the experiments in Section 4.7.2.

4.8 A survey of related techniques

In this section, we shall review related literature that aims to accomplish time-

predictability on multi-core via compile-time optimization.

The work in [39] performs a compile-time analysis to find memory blocks

that are used at most once in the program. Accessing such memory blocks

does not heavily affect performance, as they are used only once in the pro-

gram. However, accessing such memory blocks might affect the content of

328 WCET optimization for multi-core platforms

shared cache by evicting some other memory blocks. Therefore, the central

idea was to bypass the shared cache for all such memory blocks (i.e. the set

of memory blocks used only once). Another work [56] describes a technique

that reduces shared cache conflict by selectively locking memory blocks into

L1 caches. The work on software-controlled scratchpad memory [20] aims

to reduce shared bus traffic by allocating appropriate blocks into scratch-

pad memory. The final goal of such a compile-time strategy is to improve

the time-predictability of embedded software on multi-core. A different work

[65] proposes compiler transformations to partition the original program into

several time-predictable intervals. Each such interval is further partitioned

into memory phase (where memory blocks are prefetched into cache) and

execution phase (where the task does not suffer any last-level cache miss

and it does not generate any traffic to the shared bus). As a result, any bus

transaction scheduled during the execution phases of all other tasks, does not

suffer any additional delay due to the bus contention. A recent work [62]

has proposed a cache management framework for multi-core systems. Such a

framework leverages program profiling to analyze the memory access behav-

ior. Once such analysis is performed, frequently accessed memory pages are

packed to be allocated in the cache and such memory pages are also locked-

down to guarantee deterministic access time. Another approach [81] pro-

poses a shared cache management framework via a systematic combination

of cache locking and cache scheduling. Specifically, for unlocked cache lines,

cache accesses are scheduled in a fashion to minimize the overall WCET.

The work in [87] describes a memory-bandwidth reservation framework to

provide predictable worst-case behavior without an appreciable loss of per-

formance. Memory bandwidth is partitioned between guaranteed-service and

best-effort service. While a predictable worst-case behavior is possible for

guaranteed-service, best-effort service is primarily used to increase the over-

all throughput of the application. Along the same line, the work proposed in

[70] attempts to generate a bus schedule to improve the average-case exe-

cution time (ACET) and the WCET of an application simultaneously. This

technique allows to improve the ACET of an application while keeping its

WCET as small as possible.

To summarize, it is evident from the current trend of research that bring-

ing predictability via careful compiler optimizations is also an important as-

4.8. A survey of related techniques 329

pect of multi-core embedded system design. Some of these optimizations

take an orthogonal approach to the analysis discussed in section 3, such as

the work proposed in [65]. However, there also exist optimization techniques

which greatly benefit from the analyses discussed in section 3, such as the bus

schedule optimization discussed in this section and the scratchpad allocation

discussed in [20]. Moreover, the analysis of WCET may be greatly simpli-

fied due to predictable software design. Therefore, we believe that the ideas

described in section 3 and in this section are equally important for building

fully time-predictable system on multi-core platforms.

5

Time-predictable multi-core architecture for

WCET analysis

In section 3, we have discussed WCET analysis methodologies for multi-

core platforms. We have seen that resource sharing (e.g. shared caches and

shared buses) makes WCET analysis for multi-core platforms far more com-

plex than WCET analysis for single core processors. In this section, we de-

scribe a number of approaches which aim to accomplish time-predictability

via architectural transformations. The primary goal of these approaches is to

eliminate (or at least reduce) features that make WCET analysis difficult and,

potentially excessively pessimistic. On one hand, such approaches attempt

to reduce the pessimism in WCET analysis for multi-core platforms. On the

other hand, designing such architectural transformations may lead to the loss

of average-case performance. Therefore, careful design choices are crucial

for building a time-predictable as well as high performance multi-core archi-

tecture. In the following, we shall explore some important works on designing

time-predictable multi-core hardware.

5.1 Resource isolation

As we have already mentioned, resource sharing is the key bottleneck for

designing an efficient and precise WCET analysis framework for multi-core

330

5.1. Resource isolation 331

platforms. Therefore, one way to improve the time-predictability is to reduce

(or eliminate altogether) the amount of possible interferences at the hardware

level. This will isolate the different tasks running on multi-core platforms. As

a result, WCET analysis for a single task can be carried out independently

of any other task running on the system. Such an architecture was developed

under the MERASA project [63]. The purpose of this architecture was to

provide a multi-core platform where both hard real-time and non hard real-

time tasks can execute at the same time, while providing WCET analyzability

only for the hard real-time tasks. This multi-core architecture ensures that any

request to a shared resource by a hard real-time task is always bounded. This

upper bound on the shared resource latency can be taken into account for

a sound WCET analysis of hard real-time tasks. In the following, we shall

describe some critical design choices of this architecture to support WCET

analyzability.

5.1.1 Time-predictable access to shared resources

Shared bus access policies

The MERASA architecture designs a two-level arbiter – intra-core and inter-

core. As the name suggests, intra-core bus arbiters maintain the bus requests

from individual cores and the inter-core bus arbiter decides which of these

requests will be granted the bus. By maintaining the bus arbiter for each core,

the architecture ensures that a bus request from a particular core will be in-

dependent of the number of waiting bus requests from other cores. To bound

the bus access delay from a hard real-time thread, the architecture provides a

round-robin arbitration policy. Note that several hard real-time threads may

coexist with non hard real-time threads. Therefore, for the sake of predictabil-

ity, the inter-core arbiter prioritizes bus requests from hard real-time threads.

Given these design choices, we can bound the bus access time from any hard

real-time thread as follows: In the worst case, any request from a hard real-

time thread (say HRT) might be delayed by all other HRT s executing in

parallel. This amount of delay is bounded by (N −1)·Sl, where N is the num-

ber of cores and Sl is the number of cycles alloted for each bus transaction.

Moreover, the request from an HRT may appear just after a bus transaction

is scheduled from a non hard real-time thread. In this case, the request from

332 Time-predictable multi-core architecture

an HRT might be delayed by a non hard real-time thread for one bus transac-

tion. However, as any request from an HRT is prioritized over requests from

non hard real-time threads, an HRT request cannot be delayed more than Sl

cycles by a non hard real-time thread. Therefore, the upper bound on the bus

access time for an HRT can be bounded by N · Sl cycles.

Once such an upper bound has been derived, it can directly be used for

WCET analysis. In particular, WCET analysis tools for single core proces-

sors can easily be configured to use these upper bounds. However, given the

predictable design, one can use the customized WCET analysis methodolo-

gies as discussed in section 3. Such customized WCET analysis will greatly

improve the precision in WCET prediction by considering the arrival of bus

requests from each core and not always blindly accounting the upper bound

ensured by the micro-architecture (i.e. N · Sl cycles).

Shared cache access policies

Shared caches are, in general, partitioned into several banks. Different banks

can transfer memory blocks in parallel, thus improving the overall through-

put. However, if more than one memory requests are made to the same bank,

shared cache access might be delayed due to the bank conflict. To ensure a

predictable access time, the MERASA architecture employs the same policy

as used for the bus arbitration. Different requests scheduled to a cache bank

are served in a round-robin fashion among hard real-time threads (say HRT)

and requests from HRT are always given higher priority than requests from

non hard real-time threads. As a result, shared cache access time for any HRT

can be bounded using the same logic explained in the preceding paragraph.

Shared cache allocation policies

Finally, shared cache is partitioned among hard real-time threads. This elimi-

nates inter-core interferences. As a result, any WCET analysis for single core

processors can be used by configuring the cache size appropriately. However,

the MERASA architecture allows sharing the cache for non hard real-time

threads. Specifically, MERASA investigates two different partitioning tech-

niques: (i) bank-wise partitioning, where a hard real-time thread is given a

set of banks which no other thread can use, and (ii) column-wise partition-

5.2. Usage of software controlled memory 333

ing, where a hard real-time thread is given a set of cache ways in a similar

fashion. Note that for bank-wise partitioning, bank conflicts are automati-

cally removed. However, for column-wise partitioning, different hard real-

time threads may access the same bank. Therefore, the shared cache access

time is bounded as discussed in the preceding paragraph.

5.1.2 Time-predictable memory controller and interconnect

Besides the MERASA project, there have been different works under the T-

CREST project to design time-predictable memory controllers and network

interfaces. For instance, a time-predictable design of network-on-chip (NOC)

has been discussed in [72]. A more recent work discusses a reconfigurable

and time-predictable memory controller [32]. The basic intuition behind both

works is to use a time-division-multiple-access (TDMA) scheme. A TDMA

scheme is used to ensure that the service time of any bus request is indepen-

dent of the bus contention. Specifically, the work in [32] analyzes the memory

requirement of different tasks and configures a TDMA-based arbiter with ap-

propriate parameters (e.g. bus slot allocation to tasks). Besides, the arbiter

can be reconfigured via a reconfiguration protocol at appropriate intervals.

This reconfiguration aims to improve the overall performance in the pres-

ence of varying memory requirement over time. In a similar way, the work

in [72] discusses a TDMA-based design of NOC for hard real-time systems.

This NOC guarantees an upper bound on communication delay by isolating

each communication and providing connection between any two processing

cores. Besides, this work also discusses the generation of static schedules to

improve the WCET.

From the preceding discussion, we can conclude that TDMA-

based/round-robin schemes have been used extensively for designing pre-

dictable multi-core hardware. This is due to the reason that such schemes

are inherently predictable and they greatly simplify the underlying WCET

analysis.

5.2 Usage of software controlled memory

Due to the inherent difficulty in analyzing caches, software controlled mem-

ories have been adopted in several embedded systems. These software con-

334 Time-predictable multi-core architecture

trolled memories are usually called scratchpad. Scratchpad is a fast on-chip

memory and it is explicitly controlled by the user or managed by the system

software (e.g., a compiler). Scratchpad memory is mapped into the address

space of the processor. Whenever the address of a memory access falls within

a pre-defined range, the scratchpad memory is accessed instead of caches.

Since scratchpad memory contents can be controlled by a compiler, each

memory access to scratchpad becomes predictable. Besides, as discussed in

[13], using scratchpad memory leads to a reduced area and energy consump-

tion compared to caches. Unfortunately, the use of scratchpad memory comes

with a cost. Managing scratchpad memory by the user is cumbersome and

also error-prone. It also requires rewriting the existing application to utilize

the scratchpad memory. Compiler support is critical to systematically allocate

appropriate memory blocks into scratchpad memory. In the past, researchers

have studied the use of scratchpad memory for improving WCET on single

core processors [77]. In the following, we shall describe a few related works

on scratchpad allocation for multi-core processors. These works aim to im-

prove the WCET prediction by appropriately allocating memory blocks in a

shared scratchpad.

Partitioned scratchpad among multiple cores

The work in [79] studies scratchpad allocation techniques for concurrent soft-

ware in multi-core systems. Specifically, the underlying architecture contains

a private scratchpad for each core. However, multiple tasks may run on one

core and, thereby, share the private scratchpad of the core. Memory blocks,

which cannot be allocated in the scratchpad, are fetched from slow DRAM

memory. The compiler decides the content of the scratchpad via several

heuristics. The aim of these heuristics is to improve the worst case response

time (WCRT) of the overall system. To improve the sharing strategy among

different tasks, the work in [79] also studies overlay of memory contents. In

particular, WCRT analysis is used to determine the execution-time interval of

each task and check the interference among different tasks. If the execution

interval of two tasks cannot overlap, they are assigned the same scratchpad

space. Such a strategy increase the utilization of scratchpad space, which, in

turn leads to an improved worst case behavior. Finally, the work in [79] also

inserts artificial slack-time to reduce task interference. Of course, introduc-

5.2. Usage of software controlled memory 335

tion of additional slack-time may increase the WCRT. However, reduction of

task interference may increase the utilization of scratchpad space which, in

turn, may improve the WCRT. Therefore, an iterative approach has been pro-

posed which continues to insert the slack-time as long as WCRT improves.

The work in [79] was primarily designed for private scratchpads. However,

the allocation strategies in [79] were developed to work in the presence of

multiple coexisting tasks. Therefore, such allocation strategies can also be in-

vestigated in the context of a shared scratchpad among multiple cores, where

the coexisting tasks can run in the same core or in different cores.

Shared scratchpad among multiple cores

A more recent work [20] studies a multi-core architecture with shared

scratchpad space. In this architecture, each core has a private scratchpad,

however, it can also access scratch pads of different other cores (called re-

mote scratchpads) via a fast on-chip communication. The work in [20] in-

vestigates scratchpad allocation techniques to improve the overall worst case

response time (WCRT) of the application. In particular, the work in [20] ex-

tends and improves the work proposed in [79] along two different directions.

First, due to the nature of scratchpad sharing among multiple cores, com-

pilers can migrate memory blocks to a remote scratchpad if a core has high

workload. Secondly, the work in [20] shows the influence of bus traffic in de-

ciding the content of scratchpad memory. In particular, this work integrates

the shared bus model discussed in Section 3.2.4 and it gradually allocates

memory blocks into scratchpad memory to reduce the bus traffic.

In summary, scratchpad memories are a promising alternatives to cache

memories in multi-core. However, managing scratchpads requires extensive

compiler support. Specifically, for multi-core platforms, scratchpad alloca-

tion decisions face similar challenges as in WCET analysis. Such scratchpad

allocation techniques must consider the tasks executing on different cores and

their access requests to shared resources (e.g. shared bus traffic as shown in

[20]). An interesting direction would be to consider a multi-core architecture

with both shared caches and scratchpads. The problem here is to compute the

set of memory blocks having high interference in the shared cache and selec-

tively allocate such memory blocks in the scratchpad to improve the WCET.

336 Time-predictable multi-core architecture

5.3 Extension of instruction set architecture (ISA)

A different line of work aims to extend the instruction set architecture of a

processor with time constraints. With this goal in mind, the precision timed

machine (PRET) has been developed [16]. The PRET machine extends the

ISA with temporal semantics. A few instances of such timing control are as

follows:

• Ensure that a block of code takes at least a specified amount of time.

• During execution, if current time has exceeded a specified budget,

throw an exception handler.

• Ensure that a block of code takes at most a specified amount of time.

Whereas the first two points are relatively easy to integrate in the ISA, the

last point requires WCET analysis. To implement the above timing control at

the ISA level, some key extensions have been proposed, as follows:

• delay_time $t : This ensures that the following instruction cannot be

executed before time $t.

• exception_on_expire : This throws an exception if the current time

exceeds a specified time budget (deadline violation).

• mtfd $t : This extension ensures that the current time is ≤ $t when-

ever this instruction is executed.

Note that the mtfd instruction requires static WCET analysis methodolo-

gies to ensure that the execution time till the invocation of mtfd is bounded.

To realize the advantage offered by PRET machines, a programming lan-

guage PRET-C has been developed [8]. PRET-C is a synchronous language

extension of the C programming language. The primary goal with designing

such a language is to improve timing predictability by compiling a PRET-C

program into a PRET compliant ISA [8].

In the presence of multi-core processors, however, time-predictability is

seriously affected. In the context of PRET machines, therefore, it is harder

to realize mtfd instructions. As a result, besides the ISA extension, several

5.3. Extension of instruction set architecture (ISA) 337

components of a multi-core processor need to be carefully designed to en-

sure time-predictability. Recent work (e.g. in [68]) discusses the bank level

partitioning of memory hierarchy, including dynamic random access memory

(DRAM). Besides, the multiprocessor PRET machine, as discussed in [16],

also considers TDMA-based arbitration schemes for WCET analyzability and

a better realization of PRET-specific ISA.

To conclude, we can say that customized hardware features, such

as scratchpad memories and predictable arbitration policies can improve

the WCET analyzability on multi-core processors. However, such changes

should be complemented with efficient compiler schemes, such as sophis-

ticated scratchpad allocation techniques and efficient generation of TDMA

schedules to minimize bus delay. Moreover, controlling the time at ISA level

may greatly reduce the inherent non-determinism in WCET analysis. For in-

stance, by knowing the specific execution time for an instruction, we can im-

prove the estimation of shared resource interference. This, in turn, improves

the WCET analysis precision and WCET guided optimization methods (as

discussed in section 3 and section 4, respectively).

6

Discussion and future work

In this Section, we shall summarize the contributions described in this mono-

graph, outline the limitations imposed by current approaches, and we discuss

the challenges for future research.

6.1 Summary of recent development

In this monograph, along with a literature survey, we have described recent

work to achieve time-predictability on multi cores. Reviewing the current

trend of research, we have pinpointed two different directions to accom-

plish time-predictability on multi-core: (i) developing WCET analysis frame-

works to analyze shared resources on multi-core and (ii) software/architecture

transformation to guarantee worst-case timing behavior. We have shown

that sophisticated WCET analysis methodologies are pivotal to model com-

plex micro-architectural features. However, it is also worthwhile to note that

WCET analysis might be very pessimistic or have extremely high complex-

ity for certain micro-architectural features, such as dynamic bus arbiters. As a

result, predictable micro-architectural features also play a crucial role to guar-

antee worst-case timing behavior. For example, we have shown that TDMA-

based arbitration schemes are well-suited for analyzing the worst-case be-

338

6.2. Limitations imposed by current approaches 339

havior of multi-core embedded software. Therefore, we believe that a careful

code/micro-architectural transformation will greatly help to build a fairly ac-

curate WCET analysis methodology and such an integrated approach will be

crucial to accomplish fully time-predictable multi-core systems.

6.2 Limitations imposed by current approaches

In spite of several contributions described in this monograph, current ap-

proaches suffer from many limitations. These limitations need to be overcome

before adopting the current approaches in practice. In the following, we shall

discuss a number of such limitations.

Virtual memory The discussed analysis techniques do not explicitly

model memory management unit (MMU). MMUs are common in embed-

ded processors (e.g. ARM) and they are used to employ spatial separation

between tasks in the main memory. In particular, a developer writes embed-

ded software without worrying about the placement of the respective code

and data in main memory. At runtime, MMUs translate program addresses

(or virtual addresses) to actual physical addresses in the main memory. In

such a fashion, MMUs play an integral part in designing predictable embed-

ded software. However, the presence of MMU requires changes in the analy-

sis methodologies described in the monograph. This is primarily because of

two reasons. First of all, address translation may vary at runtime. As a result,

static analysis techniques (e.g. cache analysis), which relies on static predic-

tion of accessed memory blocks, have limited applications in the presence

of MMUs. This problem can be alleviated by assuming a fixed mapping be-

tween virtual and physical addresses. Secondly, address translation induces

additional delay. To reduce this delay, translation look aside buffers (TLB)

are used. TLB works as a fast cache memory and it can accommodate a par-

tial address translation table. In case the respective translation is not found

in the TLB, the required translation data is fetched from main memory and

TLB content is updated. Since accessing main memory is much slower than

accessing TLB, the presence of MMU induces additional timing delay. To

accurately predict the WCET of an embedded software, these timing delays

340 Discussion and future work

need to be modeled. The discussed analysis methodologies assume that the

MMU is disabled during the execution of the program.

DRAM timing model The discussed analysis methodologies assume a

simplistic DRAM model. However, the design of commercial DRAMs is

usually more complex. In general, DRAMs contain multiple banks. Mem-

ory requests from different DRAM banks can be serviced simultaneously.

However, requests to the same DRAM bank are usually serialized. As a re-

sult, a memory request might face additional delay due to the congestion

at a DRAM bank. This additional delay can be avoided by not allocating the

same DRAM bank to multiple threads on different cores. Using this intuition,

a recent proposal [86] provides a software-only solution to dynamically al-

locate DRAM banks and avoid bank sharing among multiple cores. Besides,

researchers have also investigated techniques to bound the interference-delay

(e.g. due to bank conflicts) in DRAM [49]. We believe that such works re-

duce the limitations of employing WCET analysis techniques on multi-core

platforms.

6.3 Other limitations

Apart from the limitations mentioned in the preceding, there exist other fac-

tors in commercial processors which make the WCET analysis difficult. For

instance, existing processors usually employ more complex bus arbitration

policies (e.g. work-conserving and priority-based) compared to TDMA-based

policies. Although such arbitration policies are preferred for improving aver-

age case performance, they adversely affect the timing predictability. To pro-

vide hard guarantees on performance, therefore, TDMA-based policies are

also used in some commercial designs [31]. Besides, in existing embedded

processors, the activities of I/O components also influences the running time

of threads on different cores. This is due to the fact that I/O components and

processor cores, in general, share the same bus. As a result, I/O activities

might delay the processor by occupying the shared bus. This is similar to the

problem of bounding the bus delay when several cores share the same bus.

As a result, the analysis methodologies for shared buses, as discussed in this

monograph, can be employed to take I/O activities into account. If the I/O

6.4. Analysis pessimism 341

components and processor cores are connected via a non-TDMA bus, it is

possible to provide temporal isolation between I/O activities and processor

activities using software-level solutions [65].

To summarize, several features of commercial multi-core processors

impose limitations on WCET analysis techniques. Such features (e.g. vir-

tual memory and I/O contention) may potentially make the WCET analysis

methodologies excessively pessimistic to be used in practice. Therefore, we

believe that hardware and software level solutions are required to reduce such

pessimism for applying WCET analysis in practice. Recent efforts in this di-

rection (e.g. works in [65, 86, 49]) are promising. Besides, the works dis-

cussed in section 5 (e.g. works in MERASA [3] and T-CREST [4] projects)

justify the need to balance timing predictability and performance at micro-

architectural level.

6.4 Analysis pessimism

There are several cases in which the discussed analysis methodologies may

potentially lead to overly pessimistic WCET estimation. One such source of

pessimism is the model of interactions between branch predictors and caches.

In particular, the analysis methodology in Section 3.3.9 conservatively as-

sumes all possible predictions (i.e. correct or incorrect) for every program

branch. This leads to several merge operations performed in the cache states.

Specifically, cache states from both the correct execution path and the mis-

predicted path need to be merged. Although such a mechanism keeps the

analysis simple and fast, this may lead to pessimistic WCET results, as the

cache analysis does not use the outcome of branch predictor modeling. Such

pessimism can be reduced by systematically integrating the branch predictor

information within cache analysis.

The discussed shared-cache analysis assumes any possible interleaving

among parallel threads for each shared cache access. This may potentially

lead to excessive pessimism if a large task (in terms of code and data size)

is generating inter-core cache conflicts. Analysis of shared caches might be

improved by systematically ruling out infeasible interleavings and computing

a thread-interleaving pattern that may potentially lead to the worst-case inter-

core conflicts.

342 Discussion and future work

Pipeline modeling may add a high pessimism in the analysis, specifically

in the presence of increased instruction-level parallelism, such as in super-

scalar processors. This happens due to many possible execution patterns even

within a single basic block. In particular, with high instruction-level paral-

lelism, the pipeline modeling might be unable to compute a precise timing

interval for different pipeline stages. Consequently, the modeling may de-

tect many infeasible resource contentions due to the overlap in the computed

timing intervals. This, in turn, may lead to an overly pessimistic WCET esti-

mation of a basic block. Besides, the presence of high instruction-level par-

allelism may also lead to pessimistic estimation of bus contexts. This might

happen due to the consideration of several execution scenarios and the bus

contexts generated from them. Overly pessimistic estimation of bus contexts

may propagate the pessimism to the WCET estimation. This might occur due

to the overestimation in predicting the waiting time to access shared buses.

Such pessimism can be reduced by choosing more fine-grained abstractions

for pipeline stages, as compared to timing interval (e.g. a set of possible ar-

rival and completion time for each pipeline stage). In choosing such fine-

grained abstractions, it is crucial to balance the increased analysis complexity

with decreased analysis pessimism.

6.5 Research challenges in future

We have observed that a fair amount of research has already been generated to

accomplish time-predictability on multi-core. However, significant research

challenges still exist and such challenges need to be tackled for a solution

to be applicable in practice and build industry-strength multi-core embedded

systems. In the following, we shall discuss a few such technical challenges.

Analysis scalability for multi-core systems WCET analysis is of

high complexity. In the presence of multi-core systems, WCET analysis

is, in general, expensive due to the presence of a huge number of micro-

architectural states. To handle this problem, existing strategies use several

abstractions. On the one hand, such abstractions reduce the complexity of

WCET analysis. On the other hand, such abstractions also lead to the re-

duction in analysis precision. Such a reduction in analysis precision might

6.5. Research challenges in future 343

be significant with increasing number of cores and therefore, the underly-

ing WCET analysis technique might be very pessimistic. Finding suitable

micro-architectural abstractions is challenging, as such abstractions should

have reasonable WCET analysis complexity, without appreciable loss of anal-

ysis precision. Therefore, WCET analysis scalability (with respect to number

of cores) remains a significant challenge in future.

Devising sound WCET analysis for accelerators In recent times,

graphics processing units (GPUs) have gained popularity in the context of

non-graphic applications. GPUs use massively parallel computing to accel-

erate an application. While a typical GPU may contain substantially larger

number of cores than a general-purpose multi-core processor (CPU), each

core of a GPU is much slower than a CPU core. Therefore, the acceleration

provided by GPUs significantly depends on the amount of parallel computa-

tion. Recent work [61] shows promising results in accelerating non-graphics

workloads on embedded GPUs. Therefore, GPUs appear to be a promising

alternative to achieve real-time performance, as also discussed in [57]. Un-

fortunately, for hard real-time applications, usage of GPUs poses several dif-

ficulties. This is primarily due to the difficulty in designing a sound WCET

analysis framework. Due to the massively parallel computation offered by

GPUs, several thousand computations might be active in parallel. This, in

turn, increases the amount of non-determinism by several orders of magni-

tude – adversely affecting the analysis of WCET on GPUs. Alternatively, one

can investigate writing and compiling GPU programs in a time-predictable

fashion or designing time-predictable GPU hardware. The primary goal is to

get a GPU program where WCET analysis can be carried out with reasonable

precision. We believe that time-predictability of embedded software for mas-

sively parallel processors (e.g. GPUs) will be a crucial step towards achieving

high performance embedded systems with real-time guarantee.

Multi-threading and concurrency The key to exploit the performance

of multi-core system is to run parallel threads on different cores. However, it

is quite natural for such multi-threaded programs to communicate via shared

memory. Accesses to such shared memory is, in general, protected by syn-

chronization primitives. Whereas shared memory highly simplifies the de-

344 Discussion and future work

sign of multi-threaded software, it poses a serious challenge to achieve time-

predictability. For cache-based systems, if shared data items reside in caches

private to each core, coherence protocols are required to forbid access to out-

dated data items. To maintain such coherency among shared data items, ad-

ditional bus transactions are required. This makes the bus traffic highly un-

predictable, leading to a poor predictability of the overall system. However,

coherency among data items can be maintained via bypassing the private store

to each core or using a shared scratchpad memory. Of course, such a solution

might be useful only with reasonable loss of performance. A more complex

situation arises in the presence of synchronization primitives. Although syn-

chronization primitives (e.g. locks) are elegant mechanisms to protect shared

data access, they lead to unpredictable data access time. This is due to the

variable waiting time (i.e. the time between requesting a lock and before the

lock is granted) required to access a shared data item. Considering a worst-

case waiting period may lead to gross overestimations. Therefore, careful

WCET analysis techniques, as well as leveraging predictable implementation

of synchronization primitives are critically important for time-predictability

of multi-threaded software on multi-core platforms.

Bridging the gap between system-level and WCET analysis

Since real-time applications are generally multi-tasking, system-level anal-

ysis (i.e. schedulability analysis) is required to check the timing constraints

of the overall application. It is generally assumed that the WCET of each indi-

vidual task is known a priori, meaning that the accuracy of system-level anal-

ysis highly depends on the low-level WCET analysis. However, it is worth-

while to note that the WCET analysis also requires inputs from system-level

analysis. One such prominent example is the computation of shared cache

latency. Shared cache latency depends on the task interference, which in turn

is determined via system-level analysis. Our discussion in section 3 shows

several such examples. In the past decade, there has been a massive progress

in the area of multi-processor scheduling. Thus, leveraging such progress in

system-level analysis into low-level WCET analysis is an important topic to

be investigated in future. Besides, the impact of different micro-architectural

delays (e.g. shared cache and shared bus delays on multi-core) on system-

level analysis need to be studied at length. Finally, modern embedded soft-

6.5. Research challenges in future 345

ware runs in the presence of a supervisory software (e.g. an operating system).

System-level analysis is usually employed at the level of a supervisory soft-

ware. Therefore, the interaction between an application and hardware in the

presence of a supervisory software opens up interesting research opportuni-

ties. A recent work in this area [23] investigates the problem on a single-core

platform. Extending this direction for a generalized multi-core platform re-

mains an open problem to be solved in future.

7

Conclusions

Ensuring the time-predictability of embedded software on multi-core plat-

forms is an ongoing and important research topic. Through this monograph,

we attempt to bring the attention of the research community towards this area.

We have extensively discussed some work which addresses several technical

challenges in this area. However, as discussed in the preceding section, im-

portant limitations still need to be addressed to adopt these techniques for a

commercial embedded processor. We have also performed a survey of related

works by several research groups. In spite of a number of existing results

in this area, significant research challenges still exist for building practical

and scalable solutions. In the previous section, based on our experience, we

have discussed several of these open challenges. We hope that this mono-

graph will help to build a background for the time-predictability on multi-

core platforms. Last but not least, we believe that this monograph will also

help in opening up high-quality research activities to address the remaining

challenges.

346

Acknowledgements

Part of the material discussed in this monograph has previously been pub-

lished in different proceedings and journals. Specifically, part of the discus-

sion in section 3 has been published in [21], [22] and [18]. Besides, some

content of section 4 has been published previously in [69], [9] and [70].

Finally, authors of this monograph acknowledge all the co-authors in their

prior conference and journal publications ([21, 69, 22, 18, 9, 70]). This work

is partially supported by Singapore Ministry of Education grant MOE2013-

T2-1-115 and the Swedish National Graduate School on Computer Science

(CUGS). These supports are gratefully acknowledged.

347

References

[1] aiT AbsInt. http://www.absint.com/ait.

[2] The KLEE Symbolic Virtual Machine. http://klee.llvm.org.

[3] Multi-Core Execution of Hard Real-Time Applications Supporting

Analysability. http://ginkgo.informatik.uni-augsburg.

de/merasa-web/.

[4] Time-predictable Multi-core Architecture for Embedded Systems. http://

www.t-crest.org/.

[5] Andreas Abel, Florian Benz, Johannes Doerfert, Barbara Dörr, Sebastian Hahn,

Florian Haupenthal, Michael Jacobs, Amir H. Moin, Jan Reineke, Bernhard

Schommer, and Reinhard Wilhelm. Impact of resource sharing on performance

and performance prediction: A survey. In International Conference on Concur-

rency Theory, pages 25–43, 2013.

[6] Sebastian Altmeyer, Robert I Davis, and Claire Maiza. Cache related pre-

emption delay aware response time analysis for fixed priority pre-emptive sys-

tems. In Real-Time Systems Symposium, pages 261–271, 2011.

[7] Sebastian Altmeyer, Claire Maiza, and Jan Reineke. Resilience analysis: tight-

ening the CRPD bound for set-associative caches. In ACM SIGPLAN/SIGBED

conference on Languages, compilers, and tools for embedded systems, pages

153–162, 2010.

[8] Sidharta Andalam, Partha Roop, and Alain Girault. Predictable multithread-

ing of embedded applications using PRET-C. In International Conference on

Formal Methods and Models for Codesign, pages 159–168, 2010.

348

http://www.absint.com/ait
http://klee.llvm.org
http://ginkgo.informatik.uni-augsburg.de/merasa-web/
http://ginkgo.informatik.uni-augsburg.de/merasa-web/
http://www.t-crest.org/
http://www.t-crest.org/

References 349

[9] Alexandru Andrei, Petru Eles, Zebo Peng, and Jakob Rosén. Predictable im-

plementation of real-time applications on multiprocessor systems-on-chip. In

IEEE International Conference on VLSI Design, pages 103–110, 2008.

[10] Todd Austin, Eric Larson, and Dan Ernst. Simplescalar: An infrastructure for

computer system modeling. Computer, 35(2):59–67, 2002.

[11] Philip Axer, Rolf Ernst, Heiko Falk, Alain Girault, Daniel Grund, Nan Guan,

Bengt Jonsson, Peter Marwedel, Jan Reineke, Christine Rochange, Maurice

Sebastien, Reinhard von Hanxleden, Reinhard Wilhelm, and Wang Yi. Build-

ing timing predictable embedded systems. ACM Transactions on Embedded

Computing Systems, Accepted for publication.

[12] Gogul Balakrishnan and Thomas Reps. Analyzing memory accesses in x86

executables. In Compiler Construction, pages 5–23, 2004.

[13] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M Balakrishnan, and Peter

Marwedel. Scratchpad memory: design alternative for cache on-chip mem-

ory in embedded systems. In International Symposium on Hardware/software

Codesign, pages 73–78, 2002.

[14] Christoph Berg. PLRU cache domino effects. International Workshop on

Worst-Case Execution Time (WCET) Analysis, 2006.

[15] Bach Duy Bui, Rodolfo Pellizzoni, and Marco Caccamo. Real-time scheduling

of concurrent transactions in multidomain ring buses. IEEE Trans. Computers,

61(9):1311–1324, 2012.

[16] Dai N. Bui, Edward A. Lee, Isaac Liu, Hiren D. Patel, and Jan Reineke. Tem-

poral isolation on multiprocessing architectures. In Design Automation Con-

ference, pages 274–279, 2011.

[17] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: Unassisted and

automatic generation of high-coverage tests for complex systems programs. In

USENIX Symposium on Operating Systems Design and Implementation, pages

209–224, 2008.

[18] Sudipta Chattopadhyay, Lee Kee Chong, Abhik Roychoudhury, Timon Kelter,

Peter Marwedel, and Heiko Falk. A unified WCET analysis framework for

multi-core platforms. ACM Transactions on Embedded Computing Systems,

Accepted for publication (An earlier version appeared in IEEE Real-Time and

Embedded Technology and Applications Symposium, 2012).

[19] Sudipta Chattopadhyay and Abhik Roychoudhury. Unified cache modeling for

WCET analysis and layout optimizations. In IEEE Real-time Systems Sympo-

sium, pages 47–56, 2009.

350 References

[20] Sudipta Chattopadhyay and Abhik Roychoudhury. Static bus schedule aware

scratchpad allocation in multiprocessors. In ACM SIGPLAN/SIGBED 2011

conference on Languages, compilers, and tools for embedded systems, pages

11–20, 2011.

[21] Sudipta Chattopadhyay and Abhik Roychoudhury. Scalable and precise re-

finement of cache timing analysis via path-sensitive verification. Real-Time

Systems, 49(4):517–562, 2013 (An earlier version appeared in IEEE Real-time

Systems Symposium, 2011).

[22] Sudipta Chattopadhyay, Abhik Roychoudhury, and Tulika Mitra. Modeling

shared cache and bus in multi-cores for timing analysis. In International Work-

shop on Software and Compilers for Embedded Systems, pages 6:1–6:10, 2010.

[23] Lee Kee Chong, Clément Ballabriga, Van-Thuan Pham, Sudipta Chattopad-

hyay, and Abhik Roychoudhury. Towards parallel programming models for

predictability. In IEEE Real-time Systems Symposium, 2013.

[24] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded

model checking using satisfiability solving. Formal Methods in System Design,

19(1):7–34, 2001.

[25] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking

ANSI-C programs. In Tools and Algorithms for the Construction and Anal-

ysis of Systems, pages 168–176. 2004.

[26] Edmund M. Clarke, E Allen Emerson, and A Prasad Sistla. Automatic verifica-

tion of finite-state concurrent systems using temporal logic specifications. ACM

Transactions on Programming Languages and Systems (TOPLAS), 8(2):244–

263.

[27] EG Coffman Jr and Ronald L. Graham. Optimal scheduling for two-processor

systems. Acta Informatica, 1(3):200–213, 1972.

[28] Antoine Colin and Isabelle Puaut. Worst case execution time analysis for a

processor with branch prediction. Real-Time Systems, 18(2-3):249–274, 2000.

[29] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice

model for static analysis of programs by construction or approximation of fix-

points. In Symposium on Principles of programming languages, pages 238–

252, 1977.

[30] Georgia Giannopoulou, Kai Lampka, Nikolay Stoimenov, and Lothar Thiele.

Timed model checking with abstractions: towards worst-case response time

analysis in resource-sharing manycore systems. In International Conference

on Embedded Software, pages 63–72, 2012.

References 351

[31] Kees Goossens, John Dielissen, and Andrei Radulescu. Æthereal network on

chip: concepts, architectures, and implementations. Design & Test of Comput-

ers, IEEE, 22(5):414–421, 2005.

[32] Sven Goossens, Jasper Kuijsten, Benny Akesson, and Kees Goossens. A re-

configurable real-time SDRAM controller for mixed time-criticality systems.

In International Conference on Hardware/Software Codesign and System Syn-

thesis, pages 1–10, 2013.

[33] Daniel Grund and Jan Reineke. Abstract interpretation of FIFO replacement.

In Static Analysis Symposium, pages 120–136. 2009.

[34] Daniel Grund and Jan Reineke. Precise and efficient FIFO-replacement anal-

ysis based on static phase detection. In Euromicro Conference on Real-Time

Systems, pages 155–164, 2010.

[35] Daniel Grund and Jan Reineke. Toward precise PLRU cache analysis. In In-

ternational Workshop on Worst-Case Execution Time Analysis, pages 23–35,

2010.

[36] Daniel Grund, Jan Reineke, and Gernot Gebhard. Branch target buffers: WCET

analysis framework and timing predictability. Journal of Systems Architecture,

57(6):625–637, 2011.

[37] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The

mälardalen WCET benchmarks: Past, present and future. In International

Workshop on Worst-Case Execution Time Analysis, pages 136–146, 2010.

[38] Jan Gustafsson, Andreas Ermedahl, Christer Sandberg, and Bjorn Lisper. Auto-

matic derivation of loop bounds and infeasible paths for WCET analysis using

abstract execution. In Real-Time Systems Symposium, pages 57–66, 2006.

[39] Damien Hardy, Thomas Piquet, and Isabelle Puaut. Using bypass to tighten

WCET estimates for multi-core processors with shared instruction caches. In

IEEE Real-time Systems Symposium, pages 68–77, 2009.

[40] Damien Hardy and Isabelle Puaut. WCET analysis of multi-level non-inclusive

set-associative instruction caches. In IEEE Real-time Systems Symposium,

pages 456–466, 2008.

[41] Damien Hardy and Isabelle Puaut. WCET analysis of instruction cache hierar-

chies. Journal of Systems Architecture, 57(7):677–694, 2011.

[42] Christopher Healy, Mikael Sjödin, Viresh Rustagi, David Whalley, and Robert

Van Engelen. Supporting timing analysis by automatic bounding of loop itera-

tions. Real-Time Systems, 18(2-3):129–156, 2000.

[43] Christopher A Healy, Robert D Arnold, Frank Mueller, David B Whalley, and

Marion G Harmon. Bounding pipeline and instruction cache performance.

Computers, IEEE Transactions on, 48(1):53–70, 1999.

352 References

[44] Benedikt Huber and Martin Schoeberl. Comparison of implicit path enumera-

tion and model checking based WCET analysis. In International Workshop on

Worst-Case Execution Time Analysis, 2009.

[45] Bach Khoa Huynh, Lei Ju, and Abhik Roychoudhury. Scope-aware data cache

analysis for WCET estimation. In IEEE Real-Time and Embedded Technology

and Applications Symposium, pages 203–212, 2011.

[46] Ilog, Inc. Solver CPLEX, 2003. http://www.ilog.fr/products/

cplex/.

[47] Lei Ju, Bach Khoa Huynh, Abhik Roychoudhury, and Samarjit Chakraborty.

Performance debugging of Esterel specifications. In International conference

on Hardware/Software codesign and system synthesis, pages 173–178, 2008.

[48] Timon Kelter, Heiko Falk, Peter Marwedel, Sudipta Chattopadhyay, and Abhik

Roychoudhury. Bus-aware multicore WCET analysis through TDMA offset

bounds. In Euromicro Conference on Real-Time Systems, pages 3–12, 2011.

[49] Hyoseung Kim, Dionisio de Niz, Björn Andersson, Mark Klein, Onur Mutlu,

and Ragunathan Raj Rajkumar. Bounding memory interference delay in COTS-

based multi-core systems. In IEEE Real-Time and Embedded Technology and

Applications Symposium, 2014.

[50] James C. King. Symbolic execution and program testing. Commun. ACM,

19(7):385–394, 1976.

[51] Marc Langenbach, Stephan Thesing, and Reinhold Heckmann. Pipeline mod-

eling for timing analysis. In Static Analysis Symposium, pages 294–309, 2002.

[52] Xianfeng Li, Yun Liang, Tulika Mitra, and Abhik Roychoudhury. Chronos: A

timing analyzer for embedded software. Science of Computer Programming,

2007. http://www.comp.nus.edu.sg/~rpembed/chronos.

[53] Xianfeng Li, Tulika Mitra, and Abhik Roychoudhury. Modeling control spec-

ulation for timing analysis. Real-Time Systems, 29(1):27–58, 2005.

[54] Xianfeng Li, Abhik Roychoudhury, and Tulika Mitra. Modeling out-of-order

processors for WCET analysis. Real-Time Systems, 34(3):195–227, 2006.

[55] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Cache modeling for

real-time software: beyond direct mapped instruction caches. In IEEE Real-

time Systems Symposium, pages 254–263, 1996.

[56] Yun Liang, Huping Ding, Tulika Mitra, Abhik Roychoudhury, Yan Li, and Vivy

Suhendra. Timing analysis of concurrent programs running on shared cache

multi-cores. Real-Time Systems, 48(6):638–680, 2012.

http://www.ilog.fr/products/cplex/
http://www.ilog.fr/products/cplex/
http://www.comp.nus.edu.sg/~rpembed/chronos

References 353

[57] Björn Lisper. Towards parallel programming models for predictability. In In-

ternational Workshop on Worst-Case Execution Time Analysis, pages 48–58,

2012.

[58] Paul Lokuciejewski, Daniel Cordes, Heiko Falk, and Peter Marwedel. A fast

and precise static loop analysis based on abstract interpretation, program slic-

ing and polytope models. In International Symposium on Code Generation and

Optimization, pages 136–146, 2009.

[59] Thomas Lundqvist and Per Stenström. Timing anomalies in dynamically

scheduled microprocessors. In IEEE Real-time Systems Symposium, pages 12–

21, 1999.

[60] Mingsong Lv, Wang Yi, Nan Guan, and Ge Yu. Combining abstract interpre-

tation with model checking for timing analysis of multicore software. In IEEE

Real-time Systems Symposium, pages 339–349, 2010.

[61] Arian Maghazeh, Unmesh D Bordoloi, Petru Eles, and Zebo Peng. General

purpose computing on low-power embedded GPUs: Has it come of age? In In-

ternational Conference on Embedded Computer Systems: Architectures, Mod-

eling, and Simulation, 2013.

[62] Renato Mancuso, Roman Dudko, Emiliano Betti, Marco Cesati, Marco Cac-

camo, and Rodolfo Pellizzoni. Real-time cache management framework for

multi-core architectures. In IEEE Real-Time and Embedded Technology and

Applications Symposium, pages 45–54, 2013.

[63] Marco Paolieri, Eduardo Quiñones, Francisco J. Cazorla, Guillem Bernat, and

Mateo Valero. Hardware support for WCET analysis of hard real-time mul-

ticore systems. In International Symposium on Computer Architecture, pages

57–68, 2009.

[64] Sudeep Pasricha, Nikil Dutt, and Mohamed Ben-Romdhane. Fast exploration

of bus-based on-chip communication architectures. In IEEE/ACM/IFIP in-

ternational conference on Hardware/software codesign and system synthesis,

pages 242–247, 2004.

[65] Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell,

Marco Caccamo, and Russell Kegley. A predictable execution model for

COTS-based embedded systems. In IEEE Real-Time and Embedded Technol-

ogy and Applications Symposium, pages 269–279, 2011.

[66] Rodolfo Pellizzoni and Marco Caccamo. Impact of peripheral-processor in-

terference on WCET analysis of real-time embedded systems. IEEE Trans.

Computers, 59(3):400–415, 2010.

354 References

[67] Jan Reineke and Daniel Grund. Relative competitive analysis of cache replace-

ment policies. In ACM SIGPLAN/SIGBED conference on Languages, compil-

ers, and tools for embedded systems, pages 51–60, 2008.

[68] Jan Reineke, Isaac Liu, Hiren D. Patel, Sungjun Kim, and Edward A. Lee.

PRET DRAM controller: bank privatization for predictability and temporal

isolation. In International Conference on Hardware/Software Codesign and

System Synthesis, pages 99–108, 2011.

[69] Jakob Rosen, Alexandru Andrei, Petru Eles, and Zebo Peng. Bus access opti-

mization for predictable implementation of real-time applications on multipro-

cessor systems-on-chip. In IEEE Real-time Systems Symposium, pages 49–60,

2007.

[70] Jakob Rosén, C Neikter, Petru Eles, Zebo Peng, Paolo Burgio, and Luca Benini.

Bus access design for combined worst and average case execution time opti-

mization of predictable real-time applications on multiprocessor systems-on-

chip. In IEEE Real-Time and Embedded Technology and Applications Sympo-

sium, pages 291–301, 2011.

[71] Erno Salminen, Vesa Lahtinen, Kimmo Kuusilinna, and Timo Hamalainen.

Overview of bus-based system-on-chip interconnections. In Circuits and Sys-

tems, 2002. ISCAS 2002. IEEE International Symposium on, volume 2, pages

II–372, 2002.

[72] Martin Schoeberl, Florian Brandner, Jens Sparsø, and Evangelia Kasapaki. A

statically scheduled time-division-multiplexed network-on-chip for real-time

systems. In International Symposium on Networks on Chip, pages 152–160,

2012.

[73] Andreas Schranzhofer, Jian-Jia Chen, and Lothar Thiele. Timing analysis for

TDMA arbitration in resource sharing systems. In IEEE Real-Time and Em-

bedded Technology and Applications Symposium, pages 215–224, 2010.

[74] Rathijit Sen and YN Srikant. WCET estimation for executables in the pres-

ence of data caches. In Proceedings of the 7th ACM & IEEE international

conference on Embedded software, pages 203–212, 2007.

[75] SPIN. SPIN Model Checker, 1991. http://spinroot.com/spin/

whatispin.html.

[76] Friedhelm Stappert, Andreas Ermedahl, and Jakob Engblom. Efficient longest

executable path search for programs with complex flows and pipeline effects.

In International conference on Compilers, architecture, and synthesis for em-

bedded systems, pages 132–140, 2001.

http://spinroot.com/spin/whatispin.html
http://spinroot.com/spin/whatispin.html

References 355

[77] Vivy Suhendra, Tulika Mitra, Abhik Roychoudhury, and Ting Chen. WCET

centric data allocation to scratchpad memory. In Real-Time Systems Sympo-

sium, pages 10–pp. IEEE, 2005.

[78] Vivy Suhendra, Tulika Mitra, Abhik Roychoudhury, and Ting Chen. Efficient

detection and exploitation of infeasible paths for software timing analysis. In

Design Automation Conference, pages 358–363, 2006.

[79] Vivy Suhendra, Abhik Roychoudhury, and Tulika Mitra. Scratchpad alloca-

tion for concurrent embedded software. ACM Transactions on Programming

Languages and Systems, 32(4):13, 2010.

[80] Henrik Theiling, Christian Ferdinand, and Reinhard Wilhelm. Fast and precise

WCET prediction by separated cache and path analyses. Real-Time Systems,

18(2/3):157–179, 2000.

[81] Bryan C. Ward, Jonathan L. Herman, Christopher J. Kenna, and James H. An-

derson. Making shared caches more predictable on multicore platforms. In

Euromicro Conference on Real-Time Systems, pages 157–167, 2013.

[82] Reinhard Wilhelm. Why AI + ILP is good for WCET, but MC is not, nor

ILP alone. In International Conference on Verification, Model Checking, and

Abstract Interpretation, pages 309–322, 2004.

[83] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan

Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heck-

mann, Tulika Mitra, et al. The worst-case execution-time problemâĂŤoverview

of methods and survey of tools. ACM Transactions on Embedded Computing

Systems, 7(3):36, 2008.

[84] Reinhard Wilhelm, Daniel Grund, Jan Reineke, Marc Schlickling, Markus Pis-

ter, and Christian Ferdinand. Memory hierarchies, pipelines, and buses for

future architectures in time-critical embedded systems. Computer-Aided De-

sign of Integrated Circuits and Systems, IEEE Transactions on, 28(7):966–978,

2009.

[85] Jun Yan and Wei Zhang. WCET analysis for multi-core processors with shared

L2 instruction caches. In IEEE Real-Time and Embedded Technology and Ap-

plications Symposium, pages 80–89, 2008.

[86] Heechul Yun, Renato Mancuso, Zheng-Pei Wu, and Rodolfo Pellizzoni. PAL-

LOC: DRAM bank-aware memory allocator for performance isolation on mul-

ticore platforms. In IEEE Real-Time and Embedded Technology and Applica-

tions Symposium, 2014.

356 References

[87] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha.

Memguard: Memory bandwidth reservation system for efficient performance

isolation in multi-core platforms. In IEEE Real-Time and Embedded Technol-

ogy and Applications Symposium, pages 55–64, 2013.

[88] Mohamed Zahran, Kursad Albayraktaroglu, and Manoj Franklin. Non-

inclusion property in multi-level caches revisited. International Journal of

Computers and Their Applications, 14(2):99, 2007.

	Abstract
	Introduction
	WCET analysis and multi-core platforms
	A background on WCET analysis
	Challenges in WCET analysis for multi-core architectures

	WCET analysis for multi-core platforms
	Modeling shared caches
	Modeling shared buses
	Modeling timing interactions
	Discussion about analysis complexity
	Experimental evaluation
	Data caches and branch target buffers
	A survey of related techniques

	WCET optimization for multi-core platforms
	Optimization of worst-case response time
	WCRT optimization approach
	Cost function
	Optimization algorithm
	Simplified algorithm
	Memory consumption
	Experimental results
	A survey of related techniques

	Time-predictable multi-core architecture
	Resource isolation
	Usage of software controlled memory
	Extension of instruction set architecture (ISA)

	Discussion and future work
	Summary of recent development
	Limitations imposed by current approaches
	Other limitations
	Analysis pessimism
	Research challenges in future

	Conclusions
	Acknowledgements
	References

