
Systematic Detection of Memory Related Performance
Bottlenecks in GPGPU Programs

Adrian Horga1 Sudipta Chattopadhyay2 Petru Eles1 Zebo Peng1

1Linköping University 2Centre for IT-Security, Privacy and Accountability
adrian.horga@liu.se, sudiptac@st.cs.uni-saarland.de,

{petru.eles, zebo.peng}@liu.se

Abstract

Graphics processing units (GPUs) pose an attractive choice for designing high-
performance and energy-efficient software systems. This is because GPUs are ca-
pable of executing massively parallel applications. However, the performance of
GPUs is limited by the contention in memory subsystems, often resulting in sub-
stantial delays and effectively reducing the parallelism. In this paper, we propose
GRAB, an automated debugger to aid the development of efficient GPU kernels.
GRAB systematically detects, classifies and discovers the root causes of memory-
performance bottlenecks in GPUs. We have implemented GRAB and evaluated it
with several open-source GPU kernels, including two real-life case studies. We
show the usage of GRAB through improvement of GPU kernels on a real NVIDIA
Tegra K1 hardware – a widely used GPU for mobile and handheld devices. The
guidance obtained from GRAB leads to an overall improvement of up to 64%.

Keywords: Performance debugging, GPGPU, Caches

i

1. Introduction

Since the inception of high-performance and energy-efficient platforms (e.g.
multi-cores, graphics processing units), it has become critical to design applica-
tions that efficiently utilize the full potential of such execution platforms. How-
ever, it is notoriously difficult to build correct and efficient software in these plat-
forms. In particular, embedded software are often constrained via timing-related
constraints or limited battery power. In order to build efficient applications on
emerging computing platforms, we envision a framework that aids, in particular,

Preprint submitted to Elsevier June 30, 2016

the validation of performance. Concretely, our goal is to systematically locate per-
formance bottlenecks, highlighting their root causes and suggesting appropriate
fixes to improve the performance, with a specific focus on GPUs.

In the last decade, mainstream [1] and embedded GPUs [2, 3] have gained pop-
ularity in designing non-graphics or general-purpose applications (as often called
GPGPU applications). GPUs can execute massively parallel applications by spawn-
ing thousands of threads in parallel. Besides, GPUs offer high-level programming
abstractions. Using such abstractions, a developer can write the code for one thread
and can specify the number of threads to execute. The amount of parallel compu-
tations, during the execution, acts as the key factor in performance gain obtained
from GPUs. The execution behavior, and hence, the performance of a GPGPU
program, in turn, is critically influenced by the underlying architecture. However,
the very complex architectural details of GPUs remain completely hidden from the
developer. As a result, it is potentially impossible for a developer to discover and
understand performance bottlenecks in GPUs. In particular, accesses to the global-
memory (DRAM), in GPUs, are often several orders of magnitude slower than
accessing on-chip memories withing GPU cores (e.g. caches, registers and shared
memory). Due to the slow response time of DRAM, it is often likely that multi-
ple threads wait for the DRAM at the same time. Therefore, even if GPU threads
are functionally independent, they may create interference among each other due
to shared resources such as DRAM. As a result, a significant number of accesses
to the global-memory may lead to memory contention, leading to a substantial
interference among GPU threads and poor overall execution time. Providing ap-
propriate methodologies to localize and understand memory-related bottlenecks is
the main contribution of this paper.

The state-of-the-art in performance debugging has long been profiling [4, 5,
6, 7, 8, 9]. Unfortunately, program profiling has several drawbacks in the context
of highlighting performance problems. First of all, profiling highlights program
locations where time is spent (i.e. hotspots), instead of locations where time is
wasted. Secondly, performance bottlenecks might be ranked lower by profilers
if they spend less time compared to the rest of the program. Finally, program
profiling, by its very nature, does not isolate the cause of performance bottlenecks.

GPUs offer very limited on-chip memories [10], such as caches and registers.
If a program variable cannot be allocated in registers, accessing the variable will
generate a memory request. For a particular memory request, caches are searched
first. If the requested memory block is not found in the cache, it has to be fetched
from the DRAM. Therefore, for a limited cache size, a large number of threads can
generate substantial interference in the cache, which may dramatically increase the
number of slow DRAM accesses. This, in turn, may lead to a scenario, where a
large number of threads would wait for their requested memory blocks.

2

In this paper, we propose GRAB, a systematic methodology that takes a straight-
forward implementation in GPU (from the respective implementation in CPU) and
gradually isolates the causes of memory-related bottlenecks in the implementa-
tion. In particular, the number of accesses to the global-memory might increase
substantially due to the complex interactions among threads or due to an exces-
sive number of threads in the GPGPU program. GRAB locates the cause of such
interference and presents a bug report to the developer. This bug report can be
used to systematically transform the straightforward GPU implementation to more
efficient versions. Thus, our framework aids inexperienced GPU programmers to
write more efficient GPU code and subsequently guide them to become better GPU
programmers.

In order to detect the interference in the memory subsystems, we face several
technical challenges. Since the execution-pattern of threads and the architectural
details of a GPU remain hidden to the developer, it is potentially impossible to
detect interference in the memory subsystems, solely by inspecting a GPGPU pro-
gram. To resolve such challenges, we execute the GPGPGU program in an en-
vironment which models the specific architectural details of the underlying GPU.
Besides, we execute the GPGPU program in a contrived fashion. In particular,
we first carefully intercept all the memory requests (i.e. accesses that go through
caches and global-memory) issued by the program, during its execution. For each
memory request, we manipulate two different execution traces – an original trace
and a golden trace. For the original trace, we respect the execution pattern in
the given GPU architecture. However, we manipulate the golden trace in such a
fashion that the execution proceeds without any interference among threads. The
golden trace acts as an ideal reference to locate all the memory requests, which are
affected due to the interference across threads.

We use the original and golden execution traces to localize the cause of inter-
ference in the memory subsystems. In particular, for each memory request, we
check whether the original and the golden trace are manipulated differently. If a
difference was observed, it was caused due to the interference among threads. Sub-
sequently, we process the execution trace backwards to discover the root cause of
such a difference. Once the root cause was found, we appropriately record this
information, which avoids searching for the same root cause again. This poten-
tially reduces the debugging time substantially, when a large amount of interfer-
ence among threads is caused due to a few instructions.

Our debugging process continues until the given GPGPU program finishes exe-
cution. At the end of the execution, we have discovered and localized all the mem-
ory requests, which are affected due to the interference across threads. We use this
information to generate a bug report for the developer. The primary purpose of
this bug report is to classify and prioritize the observed interference in the memory

3

subsystems and their respective causes. We classify each entry in the bug report
according to its potential fix. For instance, we group all global-memory requests,
which might be reduced by improving the cache management, such as by chang-
ing the memory-access pattern or memory layout. Moreover, the bug report also
prioritizes root causes discovered for interference in the memory subsystems. This
helps to focus on the more important performance-bottlenecks first. Therefore, the
generated bug report concisely reports the set of memory bottlenecks, which can
be used to understand and improve the memory performance of GPGPU programs.

Contributions. In summary, we designed and developed a systematic debugging
methodology to write efficient GPGPU programs on embedded computing plat-
forms. Our proposed methodology discovers interference in the memory subsys-
tems on-the-fly and by manipulating two different execution traces simultaneously.
In particular, one of the execution traces is used as a reference to localize the in-
terference across threads. GRAB is primarily used to generate a bug report for the
developer. The bug report captures the necessary information to understand the
memory performance problems of the GPGPU program and their potential solu-
tions. Finally, the entire process to generate the bug report is automatic and it does
not require any manual intervention. We have implemented our debugging frame-
work using GPGPU-Sim [11], a cycle-accurate, open-source GPU simulator. We
have evaluated our framework on several open-source GPU kernels, all available
in [12]. In particular, we show the usage of GRAB by improving the performance
of GPGPU programs up to 36% on two real-life case studies, on an NVIDIA Tegra
K1 GPU.

2. System and Execution Model

Figure 1 demonstrates the GPU execution platform targeted by our debugging
framework. The GPU contains a number of streaming multiprocessors (SM). All
cores in an SM share an L1 cache. Additionally, an SM may contain a software-
controlled shared memory. All memory blocks, which are not allocated into shared
memory, need to be fetched from the slow global-memory (DRAM). The num-
ber of accesses to the DRAM can be reduced dramatically due to the presence
of caches. It is worthwhile to mention that the architecture shown in Figure 1 is
typical for both mainstream [1] and embedded GPUs [2]. Our debugging frame-
work primarily targets to localize the global-memory accesses due to inter-thread
interference. More specifically, we aim to detect the following scenarios:

• Since several threads in an SM share the cache, a memory block might be
evicted from the L1 cache entirely due to inter-thread cache conflicts.

4

L1 cache
Shared

memory

.........

L1 cache
Shared

memory

.........SIMD cores

.........
Thread block

warp

Streaming multiprocessor (SM) Streaming multiprocessor (SM)

.........

Memory interferences

across threads

Global−memory (DRAM)

GPU kernel

GPU

Figure 1: Execution model (SIMD stands for “single instruction multiple data”)

• If a substantial number of threads in an SM share the cache, it may generate
a significant amount of global-memory requests, due to an inadequate size
of the L1 cache.

At present, our framework does not consider L2 caches, which are employed in
some current-generation GPUs [1]. However, the extension of our debugging
framework for multi-level caches is straight-forward and we consider such an ex-
tension for future developments.

The input to our debugging framework is an implementation of a GPU kernel
using CUDA [13]1. The execution unit of a CUDA kernel is a warp. The warp,
in turn, belongs to a specific thread block. The user only specifies the number of
thread blocks and the size of a thread block in the program. Warps are executed
within the GPU via a vendor-specific scheduling policy, typically unknown to the
developer. This leads to the potential impossibility for a developer to discover and
understand interference across threads and locate performance bottlenecks in the
memory subsystems.

Background on caches. Caches are employed to bridge the performance gap be-
tween the processing cores and the DRAM (cf. Figure 1). A cache can be described
as a triplet 〈A,S,L〉, where A is the associativity of the cache, S is the number of
cache sets and L is the line size (in bytes). Each cache set can hold A cache lines,
leading to a total cache size of (A·S ·L) bytes. WhenA = 1, the respective caches
are called to be directly mapped. Data is fetched into caches at the granularity of

1Our framework is also equally applicable for OpenCL applications.

5

line size (L). The number of cache sets (S) decides the location where a particular
memory block would be placed in the cache. For instance, a memory block, start-
ing at address M , is always mapped to the cache set (M mod S). If two memory
blocks M1 and M2 are mapped to the same cache set, we say that M1 conflicts
with M2 in the cache and vice versa. Since each cache set can hold only A cache
lines, a cache line needs to be replaced when the number of memory blocks map-
ping to a cache set exceeds A. In order to accomplish this, a replacement policy
is employed when A ≥ 2. Our framework works on any replacement policy but
we primarily discuss two widely used policies – least recently used (LRU) and first
in first out (FIFO). In the LRU policy, the memory block, that was not accessed
for the longest period of time, is replaced from the cache to make room for other
memory blocks. In the FIFO policy, the memory block, which is residing in the
cache for the longest period of time, is replaced to make room for other blocks.

3. Overview

Challenges in debugging:. Detecting memory bottlenecks in GPGPU programs
involves several technical challenges. One such key challenge is to obtain mem-
ory access information at the granularity of individual threads. Needless to say,
such information is essential to detect thread-level interference. Unfortunately,
current-generation GPUs do not provide adequate support to extract thread-level
performance statistics during execution. In order to solve this problem, we execute
and manipulate traces within a simulator GPGPU-Sim [11], which has been shown
to model the performance of GPUs in a highly accurate fashion [11]. Besides, our
evaluation also shows that utilizing traces obtained from GPGPU-Sim is a useful
technique in practice, in order to improve the performance of GPGPU programs on
real hardware.

An example. We illustrate the mechanism of our framework via a simple example.
Let us assume that three threads T1, T2 and T3 are running in parallel and they
are sharing a two-way set associative cache employing FIFO replacement policy.
We presume the cache can hold at most four memory blocks, meaning that there
exists only two different cache sets. All accesses that miss the cache, must fetch
the respective memory block from the slow global-memory. Finally, we assume
that m1, m2, m1′, m2′ and m3′ are all mapped to the cache set S1. For the sake of
illustration, we shall consider a thread to be the execution unit. Our methodology
is equally applicable for warps.

In Figure 2 - Figure 5, T1, T2 and T3 are threads running in parallel. Memory
blocks accessed by each thread are shown in a sequence. For instance, thread T2
accesses memory blocks m1′, m1′ and m2′ in a sequence. The direction of the

6

m1 m2 m1 m1’ m1’ m2 m1 m2 m1 m2’ m1’ m3’ m2 m1 m2 m1
m1

m2

m1

m1

m2

m1’

(T1)

m1’

m2’

m3’

(T2) (T3)

m1 m2 m1 m1’ m2 m1’ m2 m1 m1’ m2 m1 m2’ m2 m3’ m2’ m1 m3’ m2 m1

(Cache contents in the golden trace)

m2

Access, hit/miss, evicted block

Golden trace

(Cache contents in the original trace)

m1, miss, −

m2, miss, −

m1’, hit, −

m1, hit, −

m2, hit, −

m2’, miss, −

m3’, miss, −

m1, hit, −

m2, hit, −

Root

of miss

cause

Root
cause

of miss

m1, miss, −

m2, miss, −

m1’, miss, m1

m1’, hit, −

m1, miss, m2

m2, miss, m1’

m2’, miss, m1

m3’, miss, m2

m1, miss, m2’

m2, miss, m3’

original and the golden trace

Difference between the

Original trace

m1’, miss, −

Figure 2: Performance debugging when all memory blocks are mapped to the same cache set

arrow (among T1, T2 and T3) captures the order in which the memory requests
are scheduled. For each memory request, we only show the content of the cache
set being accessed.

Figure 2 highlights the order, in which the memory requests are scheduled
across threads. To discover interference in the memory subsystem, we execute the
program in a contrived fashion. During the execution, we intercept all memory re-
quests made by the program. The primary purpose of intercepting memory requests
is to check whether the respective request leads to an access to the global-memory
(cf. Figure 1). For each memory request during the execution, we manipulate two
different traces – an original trace and a golden trace. The original trace records
the cache hit/miss statistics for each memory request in the original execution. On
the contrary, the golden trace captures the cache hit/miss statistics assuming the
absence of any inter-thread cache conflicts. In other words, during the manipu-
lation of the golden trace, we assume that each thread has its own copy of the
cache. We emphasize that the golden trace cannot be produced simply by simu-
lating each thread in isolation. This is due to the reason that the control flow of
different threads might depend on each other (e.g. via updating and reading shared
variables).

In Figure 2, we highlight the changes in cache contents both for the original
trace and the golden trace (as labeled “original trace” and “golden trace”). For
the sake of simplicity, we only show the cache content of the cache set being ac-
cessed. Since all memory blocks are initially mapped to cache set S1, Figure 2
captures the content of cache set S1 only. For instance, let us consider the first
access to block m1′ by thread T2. If thread T2 would have a separate copy of
the cache (i.e. in the golden trace), its first access to m1′ does not evict mem-

7

ory block m1. In Figure 2, we capture both traces via a sequence of triplets of
the form 〈access, hit/miss, evicted〉, where access captures the accessed mem-
ory block, hit/miss captures whether the respective access was a cache hit and
evicted captures the memory block evicted due to access. Figure 2 highlights
these two traces for our example. Note that the first access to m1′ (in the original
trace) evicts memory block m1. Therefore, this information is captured via the
triplet 〈m1′,miss,m1〉 in the original trace.

In Figure 2, we have also highlighted the difference between the original and
the golden trace. For instance, non-first accesses to memory blocksm1 andm2 be-
have differently for the original trace and the golden trace. Recall that the golden
trace is produced assuming that each thread has its own copy of the cache. There-
fore, the difference between the original trace and the golden trace captures the
scenario when memory blocks m1 and m2 suffer cache conflicts across threads.
Our goal is to reduce such interference by highlighting their root causes. For in-
stance, consider the triplet 〈m2,miss,m1′〉 in the original trace. We discover that
the access to m2 is a miss and we check whether it has been evicted previously by
another memory access. We can find that memory block m2 was evicted by m1,
which, in turn was evicted by m1′. Therefore, the access to m1′ causes the cache
miss for the access 〈m2,miss,m1′〉. In this way, we can obtain the root cause of
all differences between the original and the golden trace, as captured in Figure 2.
In our framework, we discover all root causes on-the-fly.

After finding all root causes, we rank them according to the number of inter-
ferences (i.e. cache misses) they cause. For instance, the first access to m1′ causes
two interferences and accesses to m2′ and m3′ cause one interference each (cf.
Figure 2). This ranking is presented to the developer along with the suggestions
for possible fixes. In particular, our framework categorizes any memory request as
follows:

• hit : The requested memory block was in the cache.

• miss∗ : The requested memory block was not found in the cache and all
cache lines were occupied by some memory block requested in the past.

• miss : The memory request cannot be categorized either as hit or as miss∗.

The categorization miss∗ aims to approximate capacity misses (i.e. cache misses
due to the limited cache size). We note that true capacity misses are difficult to
predict without analyzing all memory requests in the future. Since our debugging
approach works on-the-fly, we use an approximation for capacity misses. This
keeps the debugging time short and avoids analyzing long traces. For memory
requests categorized miss, we observe that cache misses might be reduced by a

8

different cache mapping. For instance, in Figure 2, all memory blocks are mapped
to cache set S1. As a result, accesses to m1 and m2 were categorized miss. To
improve the memory performance, we suggest a rectification that map memory
blocks differently in the cache. More specifically, in Figure 2, the root cause m1′

is ranked higher than other root causes and it causes interference to memory blocks
m1 and m2. Therefore, we suggest to relocate m1′, so that it is mapped into a
different cache set than m1 and m2. More than one modification can be carried
out before invoking our debugger, but, in this example, we show the invocation of
our debugger after each single modification.

m1 m2 m1 m1’ m1’ m2 m1 m2 m1 m2’ m1’ m3’ m2 m1 m2 m1

m1 m2 m1 m1’ m1’ m2 m1 m2’ m2 m3’ m2’ m1 m3’ m2 m1

(Cache contents in the golden trace)

Access, hit/miss, evicted block

Golden trace

m1, miss, −

m2, miss, −

m1’, hit, −

m1, hit, −

m2, hit, −

m2’, miss, −

m3’, miss, −

m1, hit, −

m2, hit, −

Root

of miss

cause

m1, miss, −

m2, miss, −

m1’, hit, −

m2’, miss, m1

m3’, miss, m2

m1, miss, m2’

m2, miss, m3’

m1, hit, −

m2, hit, −

m1m2

m1’, miss, −

(Cache contents in the original trace)

original and golden trace

Difference between the

Original trace

m1’, miss, −

Figure 3: Performance debugging when m1, m2, m2′ and m3′ are mapped to the same cache set,
but m1′ is moved to a different cache set. Note: The memory request order is the same as in Figure 2

Figure 3 captures the execution scenario after m1′ is mapped to S2. If the
performance of the program in Figure 3 is acceptable, we can stop to make any
further refinement. Otherwise, we can run our framework to discover the memory
interference shown in Figure 3. Using the same procedure, we can highlight the
root cause of such interference, as shown in Figure 3. In this case, we also discover
that memory blocksm1 andm2 face interference due tom2′ andm3′, respectively.
In this scenario, m2′ and m3′, each causes one interference and, hence, they are
ranked equally. We can also discover that the cache set S2 is occupied only by m1′

requested in the past. Therefore, the possible fix was suggested again to improve
the cache mapping. Since m2′ and m3′ are ranked equally, let us assume that we
choose m2′ to be relocated in memory, so that m2′ is mapped to S2.

9

m1 m2 m1 m1’ m1’ m2 m1 m2 m1 m2’ m1’ m3’ m2 m1 m2 m1

m1 m2 m1 m1’ m1’ m2 m1 m2’ m3’ m2 m1

(Cache contents in the golden trace)

Access, hit/miss, evicted block

Golden trace

m1, miss, −

m2, miss, −

m1’, hit, −

m1, hit, −

m2, hit, −

m2’, miss, −

m3’, miss, −

m1, hit, −

m2, hit, −

m1, miss, −

m2, miss, −

m1’, hit, −

m1, hit, −

m2, hit, −

m1m2

m1’, miss, −

m1’ m2 m1 m3’

of miss

cause
Root

m2, miss* , m3’

(Cache contents in the original trace)

original and the golden trace

Difference between the
m2’, miss, −

Original trace

m1’, miss, −

m1, miss* , m2

m3’, miss*, m1

Figure 4: Performance debugging when m1, m2 and m3′ are mapped to the same cache set, but
m1′ and m2′ are moved to a different cache set. Note: The memory request order is the same as in
Figure 2

After the preceding modification, the execution scenario is captured via Fig-
ure 4. We can observe that the number of cache misses remains the same as before
the modification. However, all differences between the original and the golden
trace are caused by access to m3′. Besides, we note that for any observed differ-
ence, all cache lines were occupied by a memory block requested in the past. This
is highlighted by “miss∗” for accesses to m1 and m2.

One possible way to reduce such cache misses would be to merge thread T1
(which accesses m1 and m2) and T3 (which accesses m3′). It is important to note
that reducing the number of threads reduces the amount of parallel computations
and thus, may increase the overall execution time. Moreover, merging two parallel
threads may require non-trivial changes in the source code and therefore in general,
such changes should be performed interactively with the developer. Of course,
if a change performing the merge between threads does not improve the overall
performance, such a change could always be ignored by the developer.

The execution scenario after merging thread T1 and T3 are shown in Figure 5.
In this scenario, we do not observe any memory interference across threads. How-
ever, we reduce the amount of concurrency by merging two threads. We believe
that the decision to make such modifications should be left to the developer. In
general, the number of threads and amount of memory contention pose a complex

10

m2

m1

m2

m1

m1

m2

m1’

(T1)

m1’

m2’

(T2)

m3’

m1 m2 m1 m1’ m1’ m2 m1 m2’

(Cache contents in the golden trace)

Access, hit/miss, evicted block

Golden trace

(Cache contents in the original trace)

m1, miss, −
m2, miss, −

m1’, hit, −
m1, hit, −
m2, hit, −
m2’, miss, −

m1, miss, −
m2, miss, −

m1’, hit, −

m2 m1 m1’ m1m2 m1m2 m2m3’

m1 m2 m1 m1’ m1’ m2 m1 m2 m1 m2’ m1’ m2 m1m2 m1 m3’ m2

m1, hit, −

m1’, miss, −

m2, hit, −
m2’, miss, −
m1, hit, −
m2, hit, −

m1, hit, −
m2, hit, −
m3’, miss, m1

Identical

Original trace

m1’, miss, −

m3’, miss*, m1

Figure 5: Performance debugging when merging threads T1 and T3 to reduce interference among
threads

design trade-off and our goal is to help the developer to choose an appropriate
implementation using our framework.

In summary, our debugging framework aims to interact with the developer by
highlighting memory interference across threads and by suggesting their possible
fixes. At any moment, such interference can be ignored by the developer when
the obtained performance is acceptable. We emphasize that the primary goal of
our framework is to present the developer a prioritized list of statements, which
cause memory interference across threads and they might dramatically reduce the
performance gain obtained from GPUs. Such a list can be used either as hints
for optimizing compilers or as suggestions for manually modifying the GPGPU
program.

Debugging framework. Figure 6 captures the workflow of GRAB. In this work,
we do not focus on the test generation problem to expose memory bottlenecks in
GPGPU programs. Therefore, we assume the presence of an existing test-suite,
using which the GPU kernel can be executed. Such test suite can be generated via
fuzzing the GPU kernel or via systematic testing [14]. Broadly, we perform the
following operations to localize the cause of memory interference across threads.

• We monitor the execution of the GPU kernel (execution monitor) and inter-
cept every memory request made by the GPU kernel. We accomplish this
in a simulator, which models the architecture of the underlying GPU. We do
not need to modify the GPGPU program to intercept its memory requests,

11

GPU kernel

Test suite

Execution
Monitor

Update
original trace

Update
golden trace

Memory request
(access to caches,

global-memory)

CompareIsolate root
causes

Generate
bug report

Refine GPU Architectural Simulator

Straightforward
implementation

Figure 6: Overall debugging framework

as it is purely accomplished by modifying the simulator. We describe this in
more detail in Section 4.1.

• Once a memory request is identified, we update the original trace and the
golden trace to facilitate the debugging process. If any difference is identified
between the original and the golden trace, we discover the root cause of such
difference (see Sections 4.2-4.3 for details).

• After the execution is terminated, the set of root causes and the detected
memory interference are used to generate a bug report. This bug report con-
tains a prioritized list of root causes, which generate memory interference
across threads. The bug report also contains suggestions for the developer to
reduce such interference (see Section 4.4 for details).

4. Detailed Methodologies

Algorithm 1 outlines our overall debugging process. Our framework is care-
fully integrated within a simulator, such that it accurately records the memory per-
formance of a GPGPU program. In order to accomplish this, we intercept all mem-
ory requests (i.e. accesses going through the cache and global-memory) during the
execution and record their performance in the execution trace T . More impor-
tantly, we manipulate the execution to compute a golden trace T ′ simultaneously.
T ′ records the performance of all memory accesses in the absence of any inter-
thread interference. It is worthwhile to mention that the computation of T ′ does
not affect the original execution in T . Besides, our framework does not require
any modification of the original GPGPU program. Therefore, the execution trace

12

T accurately records the memory performance of the original GPGPU program.
The main purpose of computing T ′ is to compare it with T and systematically lo-
cate interferences across threads. Such a comparison only requires a linear scan
through the trace T . Besides, we analyze T and T ′ to localize the root-cause of
each inter-thread memory-interference during the execution. Finally, the detected
set of inter-thread interferences and their respective root causes are used to gen-
erate a bug report. Such a bug report categorizes and prioritizes the root-cause of
memory interferences. The category of a root-cause is used to suggest a possible
solution to rectify memory performance bottlenecks and the respective priority is
used to highlight the amount of interferences caused. In short, the generated bug re-
port captures a concise summary to understand the memory performance problems
in the respective execution scenario. In the following, we describe each component
of our debugging framework in more detail.

4.1. Intercepting Memory Requests

In GPUs, several threads are often grouped together into warps [13] and they
execute in a lock-step fashion. Each memory request is issued by a specific warp.
However, it is possible that only a subset of threads, which constitute the warp,
makes a memory request. This might happen either due to different control flow or
different data usage across threads. In order to identify threads for a given memory
request, a thread mask is provided. In our framework, we record the address of a
memory block and the respective thread mask, for each memory request by a warp.
Therefore, each intercepted memory request in our framework captures a tuple of
the form 〈addr ,mask〉, where mask is a bitvector capturing the thread-mask. For
instance, let us assume that a warp contains 32 threads and only the first two threads
are active for a memory request at address 0xFFFF . Such a memory request can
be captured by the tuple 〈0xFFFF, 11 00 . . . 00︸ ︷︷ ︸

30

〉.

A thread mask uniquely identifies the active threads within a warp, for a spe-
cific memory request. However, thread masks are insufficient to uniquely identify
threads across warps. Since our goal is to detect memory interferences across
threads, it is crucial for us to uniquely identify a thread, in a given execution. In
Algorithm 1, lines 17-19 compute a unique prefix to identify a warp. In particular,
a unique thread identity can be computed by understanding the execution behav-
ior of GPGPU programs. For instance, a GPU kernel can be divided into several
blocks and each block might be divided into several warps (cf. Figure 1). Finally,
one or more warps may run on a given SIMD core. Therefore, given a thread mask
mask , we concatenate identities of the respective block and the warp to compute a
unique thread identity within a core (cf. lines 17-19 in Algorithm 1). Finally, the
identity of the SIMD core can be used to uniquely identify threads across cores.

13

4.2. Computing Execution Traces

Algorithm 1 Localizing GPU’s memory bottlenecks
1: Input:
2: 〈P, I〉 : 〈 The GPU-kernel under test, program input 〉
3: Output:
4: R: A bug report
5: Launch P on input I
6: /* initialize private cache memory for each thread */
7: /* this is required only for debugging */
8: if (warp w is launched for the first time on core C) then
9: Let Nw be the number of threads in w

10: Let w belong to block B
11: Ω(C.B.w.n) := empty , ∀n ∈ [1, Nw]
12: end if
13: for (each memory request by a warp w) do
14: Let the program location for the request be loc
15: Let the memory request be 〈addr ,mask〉
16: /* construct a prefix to uniquely identify threads */
17: Let warp w belong to block B
18: Let warp w execute on SIMD core C
19: Construct unique thread-identity prefix as C.B.w
20: Let Ω(C) be the cache assigned to core C
21: /* compute the cache access category for addr */
22: δ := ∆(addr,Ω(C))
23: Update the cache Ω(C)
24: Say χ is the evicted memory block from Ω(C)
25: /* update the original execution trace */
26: /* root causes are computed in line 55 */
27: T := T • 〈C.B.w, loc, addr , δ, χ, empty〉
28: n := 1
29: /* manipulate the cache private to each thread */
30: /* these caches were created for debugging at */
31: lines 8-11 */
32: while (mask 6= 0) do
33: δ′[n] := ϕ
34: if (mask & 0x1) then
35: Construct unique thread id C.B.w.n
36: Locate the private cache of the thread C.B.w.n

14

Algorithm 1 Localizing GPU’s memory bottlenecks (continued)

37: Let Ω(C.B.w.n) be the private cache
38: δ′[n] := ∆(addr,Ω(C.B.w.n))
39: Update the cache Ω(C.B.w.n)
40: end if
41: mask := mask >> 1
42: n := n+ 1
43: end while
44: /* check whether any thread has a cache hit */
45: /* in the golden execution trace T ′ */
46: if (∃k. δ′[k] 6= ϕ ∧ δ′[k] = hit) then
47: δg := hit
48: else
49: δg := miss
50: end if
51: /* update the golden execution trace */
52: T ′:= T ′ • 〈C.B.w.k, loc, addr , δg,−,−〉
53: /* find the root cause */
54: if (δ 6= hit) then
55: LocalizeRoot(addr, loc, C, T , T ′, δ, δg,R)
56: end if
57: end for
58: Present the bug reportR to the developer

In Algorithm 1, lines 27-52 outline the manipulation of the original trace T
and the golden trace T ′, for each memory request. An execution trace can be de-
scribed as a sequence of sextuples of the form 〈tid, pc, block,mstat, evict, root〉.
Each sextuple captures a memory request that traverses through the cache or global
memory. The components of a sextuple have the following interpretation:

• tid : The unique identity of a warp (for the original trace T) or a thread (for
the golden trace T ′) making the memory request.

• pc : Program location invoking the memory request.

• block : The address of the requested memory block.

• mstat : Cache-access category (i.e. hit/miss/miss∗).

• evict : The address of the memory block evicted (or empty if none evicted)
from the cache due to the respective memory access.

15

• root : The root cause of any inter-thread interference faced by the memory
access.

For the golden trace, we do not require the fields evict and root. Therefore, while
computing the information in the golden trace, we ignore these fields. In the fol-
lowing, we shall describe how the information in each sextuple is computed.

After a memory access 〈addr ,mask〉 is identified, we check whether the mem-
ory request can be satisfied from the cache. Let us assume C is the core which
makes the memory request and Ω(C) is the cache assigned to the core. We compute
the cache-access categorization ∆(addr,Ω(C)) of a memory request 〈addr ,mask〉
as follows:

∆(addr,Ω(C)) =

miss, if ε(Ω(C)) ∧ addr /∈ Ω(C);
miss∗, if ¬ε(Ω(C)) ∧ addr /∈ Ω(C);
hit, otherwise;

(1)

The predicate ε(Ω(C)) is evaluated to the logical formula false, if and only if all
cache lines in Ω(C) are occupied by some memory block requested by the GPGPU
program. Therefore, we use the categorization miss∗ to approximate capacity
misses. We also compute the evicted memory block χ from the cache Ω(C) (line 24
in Algorithm 1). It is worthwhile to note that an access to addr may not evict any
memory block from the cache. In such cases, χ gets the value of an empty block
empty . The primary purpose of computing the evicted block χ is to identify the
root cause of inter-thread interference.

We go through each thread captured by the thread mask mask (lines 32-42
in Algorithm 1). We first compute a unique thread identity C.B.w.n (line 35),
using the identity of the respective core (C), the thread block (B), the warp (w)
and the thread (n) requesting the memory. Such a unique thread identity is first
used to locate the cache Ω(C.B.w.n), which is private to the respective thread. It
is important to emphasize that the cache Ω(C.B.w.n) does not really exist; it is an
artifact created, manipulated and released by our framework in order to produce the
golden trace and only used for the purpose of debugging. Moreover, manipulating
these caches does not affect the original execution in T . Once the private cache
Ω(C.B.w.n) is located, we compute whether the access to addr can be satisfied
from Ω(C.B.w.n) as follows:

∆(addr,Ω(C.B.w.n)) =

{
miss, if addr /∈ Ω(C.B.w.n);
hit, otherwise;

(2)

16

Since the cache Ω(C.B.w.n) is private to the thread C.B.w.n, Ω(C.B.w.n) does
not suffer any inter-thread interference. As a result, ∆(addr,Ω(C.B.w.n)) can be
compared with ∆(addr,Ω(C)) to discover the effect of inter-thread memory in-
terferences. However, we note that each memory request in the golden execution
might be evaluated differently for different threads within the same warp. Specif-
ically, if both threads n and n′ belong to the same warp w, ∆(addr,Ω(C.B.w.n))
might not be equal to ∆(addr,Ω(C.B.w.n′)). In such cases, we consider two dif-
ferent scenarios as follows:

• S1 : ∆(addr,Ω(C.B.w.n)) = hit for at least one thread n within a warp,

• S2 : ∆(addr,Ω(C.B.w.n)) = miss for all threads n within the same warp,

Let us assume that ∆(addr,Ω(C)) was not evaluated to be a hit. For the scenario
S1, we can argue that a thread n, for which ∆(addr,Ω(C.B.w.n)) = hit, suffers
a cache miss in the original execution due to interference across threads. For S2,
all threads within the same warp suffer cache misses, even in the absence of inter-
ference across threads. Therefore, we consider that the interference across threads
was not the cause of the resulting cache miss. In Algorithm 1, Scenarios S1 and
S2 are considered in lines 44-49.

We update the execution traces T (the original trace) and T ′ (the golden trace)
with the information computed via ∆(addr,Ω(C)) and ∆(addr,Ω(C.B.w.n)), re-
spectively. More importantly, we use this information to compute the root cause of
memory interferences. This is accomplished via the procedure LocalizeRoot,
described in Section 4.3.

Finally, we continue the aforementioned process for each memory request by
a warp (lines 13-55 in Algorithm 1).

4.3. Locating Root Causes

Figure 7 outlines the procedure to localize the root cause of memory perfor-
mance bottlenecks. In Algorithm 1, this procedure is carried out via line 55 (call to
procedure LocalizeRoot). The key idea is to check the difference between the
original and the golden trace and to traverse the chain of memory blocks evicted
from the cache. The memory access, of the first eviction in such a chain of memory
blocks, is determined to be a root cause of memory interference.

Let us consider our example in Figure 2 and assume that we want to find the
root cause for the memory access captured by 〈m1,miss,m2〉. We go backwards
in the trace and observe that m1 has been evicted by m1′. Therefore, the root
cause of interference at 〈m1,miss,m2〉wasm1′. However, for the memory access
〈m2,miss,m1′〉, althoughm2 has been evicted bym1, we highlight the root cause

17

(tid’’, pc’’, block’’, mstat’’, evict’’, root’’)

(tid’, pc’, block’, mstat’, evict’, root’)

evict’’ = block’

(tid, loc, addr, mstat, evict, root)

evict’ = addr

root’ = (pc’’, block’’) [I2]

root = root’ = (pc’’, block’’) [I3]

[I1]

Original Trace

Ef
fe

ct
s

of

ro
ot

 c
au

se

Figure 7: Showing root-cause finding for a sequence of three instructions I1, I2 and I3, assuming
all instructions suffer cache misses. If block′′ has not been accessed before, I1 will inevitably suffer
a cache miss and we make its root cause to be empty. If I1 evicts block′ (i.e. block′ = evict′′), we
set root′ = (pc′′, block′′) while executing I2. If I2 evicts addr (i.e. addr = evict′), we have root
to be the same as root′ (i.e. the root cause affecting I2). Therefore, in this example, there is a single
root cause (pc′′, block′′) that results in cache misses both at I2 and I3.

to be m1′. This is because, the root cause for the eviction of m1 was m1′, as
discovered on-the-fly.

For each memory request, we first compare cache-access categories δ and δg,
which are passed as parameters to the procedure call LocalizeRoot (cf. line 55
in Algorithm 1). Note that δ was derived from the original trace, whereas δg was
derived from the golden trace. Therefore, if δ was observed to be a cache hit,
then the respective memory request does not affect performance. For the rest of
the scenarios, we categorize memory interferences into different types of faults as
shown in Table 1 (note thatR captures the bug report).

Fault type Scenario
R.faultmh (δ = miss ∧ δg = hit)

R.faultm∗h (δ = miss∗ ∧ δg = hit)

R.faultmm (δ 6= hit ∧ δg = miss)

Table 1: Categorizing fault types

We note the special case when both the original and the golden trace observe
cache misses (i.e. Fault R.faultmm). For such cases, we can conclude that inter-
thread interferences do not cause the cache misses. Therefore, reducing the inter-
ference among threads will not result in an improved memory performance. It is

18

possible that cache misses were unavoidable for both the original and the golden
trace (e.g. first few accesses in Figure 2 - Figure 5). Otherwise, the cache misses
were caused by memory interferences within a thread. One possible way to reduce
such cache misses is to reduce the global-memory usage in each thread. This, in
turn, will potentially reduce the memory interference caused within a thread.

We formulate a fault type f (i.e. R.faultmh, R.faultm∗h or R.faultmm)
by a tuple 〈count, causes〉, where count captures the number of times f ap-
pears in the execution and causes captures all root causes that result in fault
type f . Each root cause in a fault type is further decomposed into its priority
p and all possible locations effects, which are affected by the respective root
cause. We compute the priority (p) of a root cause via the number of interfer-
ences caused by it. Each entry in effects is captured by a tuple 〈loc, addr〉,
where loc is the program location and addr is the accessed memory block. For
instance, in Figure 7, we have a single root cause causing two faults. Assuming
both faults belong to the same fault-type, we record the following information:
〈pc′′, block′′〉 ∈ R.causes, 〈pc′, block′〉 ∈ R.causes[〈pc′′, block′′〉].effects, and
〈loc, addr〉 ∈ R.causes[〈pc′′, block′′〉].effects. Figure 8 generalizes the struc-
ture of a fault type in the bug report.

4.4. Generating Bug Report

root
cause 1 p1

Fault type

count

addrloc

addrloc

addrloc
root

pncause n

.

.

.

.

.

.

root

causes

causes

causes

effects

effectscause 2 p2

loc = program location, addr = memory block

Figure 8: Structure of the bug report for each fault type

The generated bug report (cf. line 58 in Algorithm 1) summarizes the memory-
performance bottlenecks detected during an execution. Figure 8 graphically cap-
tures the structure of a bug report for a given fault type. The count subfield captures
the number of occurrences of the respective type of fault. Therefore, depending on
the value of the count subfield, the developer can prioritize the order of fixing a
fault. We emphasize that the type of the fault allows a developer to find its possible

19

fix. In particular, Table 2 distinguishes different faults according to their potential
solutions.

Fault type Potential fix
R.faultmh Improving cache management

(better cache mapping, changing data-access pattern)
R.faultm∗h Reducing number of threads

or reducing accesses to the cache via shared memory
R.faultmm Reducing global-memory usage within thread

(e.g. using auxiliary registers)

Table 2: Categorizing fault types according to their fixes

To summarize, we generate a bug report R, which categorizes inter-thread in-
terferences into three different categories (cf. Table 2). For each such category,
we list the set of root causes (cf. Section 4.3). Each root cause is prioritized (as
captured via p1, p2, . . . , pn in Figure 8) according to the number of inter-thread
interferences caused by the same. Therefore, the priority of a root cause can be
used to rectify the most significant interferences early during the design process.
Finally, our bug reportR satisfies the following properties:

Property 4.1. For a given execution scenario, let us assume f is a fault (cache
miss) of type R.faultmh or of type R.faultm∗h. This fault appears due to the
interferences between threads.

Property 4.2. For a given execution, if the interference among threads leads to
a cache miss of memory block “addr” at program location “loc”, then the bug
report R must include a root cause r and a fault type f , such that 〈loc, addr〉 ∈
R.causes[r].effects.

5. Evaluation

Experimental setup. We have implemented GRAB [12] on top of GPGPU-Sim
[11]. We use the nvcc compiler to compile GPU kernels into CUDA compliant bi-
naries, execute them using GPGPU-Sim and manipulate the execution via GRAB.
Our implementation is completely automated and it does not require any manual
intervention. Besides, we do not need to modify the underlying GPGPU program
to place it into the debugging environment. Since we aim to uncover memory bot-
tlenecks, we choose GPU kernels with substantial data accesses. All our subject
programs are available in [12]. Table 3 reports some salient features of the subject

20

Program name Input size (bytes) #Threads/block #Blocks
Transpose 1024 * 256 * 4 256 1024

Bitonic Sort 512 * 4 512 256
Scan 512 * 4 512 1

MatMult 64 * 64 * 4 64 64
LBM 128 * 128 * 17 * 4 512 32

Susan 512 * 512 128 2048

Table 3: Salient features of the subject programs

programs (chosen from [15]) used in our evaluation. We have also chosen two case
studies. The first case study implements a fluid dynamic simulation using Lattice
Boltzmann Models (cf. LBM in Table 3) [16] and the second case study captures an
image processing algorithm for noise filtering, edge finding and corner finding (cf.
Susan in Table 3) [17]. Both LBM and Susan are suitable for GPU implementa-
tion, as their respective computational units (an image pixel for Susan and a node
for LBM) could be processed in parallel by independent GPU threads. All our eval-
uations have been conducted on an NVIDIA Tegra K1 platform. For measuring
the execution time on the Tegra K1, we have used the default frequencies: 72 MHz
for the GPU’s core clock and 204 MHz for the GPU’s memory clock. Finally, we
compute the percentage improvement using the formula told−tnew

told
, where told is the

time taken by the initial version and tnew is the time taken by the version obtained
after improvement.

We evaluate and study the following research questions:

• RQ1: How effective is GRAB to localize performance bottlenecks? In partic-
ular, we aim to investigate whether memory-related bottlenecks, as detected
by GRAB, play a major role in the efficiency of a GPGPU program. Besides,
we would also like to see the ratio between the number of reported faults and
the number of detected root causes.

• RQ2: Can we use GRAB to improve the performance of GPGPU programs?

• RQ3: Can we use GRAB to select appropriate GPU platform? In particular,
we would like to discover whether GRAB can be used for hardware/software
co-design, with a specific focus on GPU platforms.

RQ1: How effective is GRAB to localize performance bottlenecks?. Table 4 sum-
marizes our evaluation. Subject programs in Table 3 have different implemen-

21

E
xe

cu
tio

n
R
.f
a
u
lt
m

h
.c
o
u
n
t

R
.f
a
u
lt
m

∗
h
.c
o
u
n
t

R
.f
a
u
lt
m

m
.c
o
u
n
t

Pr
og

ra
m

na
m

e
tim

e
on

Te
gr

a
K

1
(µ

s)
#F

au
lts

#R
oo

t
#A

ff
#F

au
lts

#R
oo

t
#A

ff
#F

au
lts

#R
oo

t
#A

ff
ca

us
e

ca
us

e
ca

us
e

T
r
a
n
s
p
o
s
e
n
a
i
v
e

26
44

0
0

0
0

0
0

0
0

0
T
r
a
n
s
p
o
s
e
b
e
s
t

17
50

0
0

0
0

0
0

10
1

1
B
i
t
o
n
i
c
S
o
r
t
b
a
s
i
c

50
3

1
1

1
18

98
2

6
39

2
3

B
i
t
o
n
i
c
S
o
r
t
b
e
s
t

46
8

0
0

0
8

1
1

0
0

0
S
c
a
n
n
a
i
v
e

38
70

0
0

0
0

0
0

35
94

1
1

S
c
a
n
w
o
r
k
e
f
f
i
c
i
e
n
t

45
14

0
0

0
31

56
1

1
39

92
1

2
S
c
a
n
b
e
s
t

33
73

0
0

0
0

0
0

24
00

1
2

M
a
t
M
u
l
t
b
a
s
i
c

21
84

21
0

3
2

65
40

3
2

10
03

9
3

3
M
a
t
M
u
l
t
b
a
s
i
c
m
o
d
i
f
i
e
d

14
82

89
4

2
1

56
88

2
1

17
92

2
2

M
a
t
M
u
l
t
b
e
s
t

77
8

0
0

0
64

1
1

50
4

3
1

L
B
M
b
a
s
i
c

63
22

0
0

0
46

25
8

15
18

49
03

6
14

20
L
B
M
V
1

47
80

0
0

0
25

19
9

7
13

68
4

12
9

L
B
M
V
2

42
12

18
1

1
22

82
5

3
40

88
6

4
S
u
s
a
n
b
a
s
i
c

68
32

0
0

0
26

09
5

17
14

12
93

8
17

17
S
u
s
a
n
m
o
d
i
f
i
e
d

64
10

0
0

0
18

86
3

7
16

09
6

8

Table 4: Summary of evaluation (source codes of program versions are in the project website [12]).
#Aff captures the number of program locations reporting faults (affected locations) and #Faults cap-
tures the total number of reported faults

22

tations to compare the GPU performance. For Transpose and Scan, all the
implementations were chosen from [15]. For Bitonic Sort, MatMult (ma-
trix multiplication), LBM and Susan we obtained straightforward GPU imple-
mentations (i.e. Bitonic Sort basic, MatMult basic, LBM basic and
Susan basic, respectively). Such implementations were written by an experi-
enced developer without the knowledge of memory subsystems. From Table 4, we
make the following observations:

(OBS1). We want to compare different GPU implementations of the same pro-
gram. As observed from Table 4, none of the implementations for Transpose
report a substantial number of faults. This result guides the developer to focus not
on reducing the interference across threads, instead, focusing on other memory-
related bottlenecks (e.g. uncoalesced memory accesses). On the contrary, the best
implementation of Scan (i.e. Scan best) exhibits much less faults compared to
the other two implementations (i.e. Scan naive and Scan workefficient).
We make similar observations for Bitonic Sort, MatMult, LBM and Susan.
Therefore, we can conclude that the number of faults, as reported by GRAB, plays
an important factor in GPU performance.

(OBS2). The number of root causes are substantially smaller than the number of
reported faults. For instance, let us consider the kernel Bitonic Sort basic.
Executing this kernel, we report 1898 faults of type R.faultm∗h. However, all
the problems are caused by only two locations. This makes the bug report use-
ful for investigation, as we can concentrate on a few small number of root causes.
The number of affected locations is also substantially smaller than the number of
faults. This is expected, as a single location in the GPGPU code might be accessed
by thousands of threads. In particular, this makes the developer aware that a sin-
gle location in the GPGPU code might cause a substantial number of faults, but,
modifying only a few locations might significantly improve the performance.

RQ2: Can we use GRAB to improve the performance of GPGPU programs?.
In order to show the usage of GRAB, we choose the straightforward implemen-
tation of Bitonic Sort (i.e. Bitonic Sort basic). Our goal is to see
whether the memory performance of Bitonic Sort basic can be improved
using GRAB. We use GRAB to locate all the memory performance bottlenecks
and generate the bug report (cf. Table 4). As observed from Table 4, GRAB re-
ports 1898 faults of type R.faultm∗h and 39 faults of type R.faultmh. Since the
number of typeR.faultm∗h faults is substantially higher, we concentrate whether
type R.faultm∗h faults could be fixed first. Recall that type R.faultm∗h faults
might be reduced by decreasing the number of threads or by moving data into the

23

shared memory, and thereby reducing the number of accesses to the cache (cf. Ta-
ble 2). Fortunately, our bug report only records two root causes and six locations
to be affected by type R.faultm∗h fault. As a result, we can concentrate only on
a small set of locations in the program Bitonic Sort basic. From the bug
report, we can identify that these locations correspond to the access of the input
array. Therefore, a potential solution is to access the input array in such a fash-
ion that they bypass the cache. This can be accomplished by moving the input
array into shared memory and modifying the code accordingly. This results in the
implementation of Bitonic Sort best (similar to the one from [15]), which
substantially reduces the number of faults reported by GRAB (cf. Table 4) and
improves the overall performance by 7% on real hardware.

We investigated MatMult basic to improve its performance using GRAB.
We first aim to reduceR.faultmm fault-type, as it has the largest number of occur-
rences. To rectify faults of type R.faultmm, note that we can potentially reduce
the data usage in a thread (cf. Table 2). In order to do this, we located one of the
root causes and observed that the multiplication result is repeatedly being written
to the global-memory. To fix this, we simply introduced a scalar variable sum
(which is allocated in a register), where we store the intermediate result and write
to the global-memory at the end of the kernel. Note that it may potentially in-
crease the code size, which is the reason, the developer might have avoided doing
so in the first place. Our fix eliminates all reported faults of MatMult basic
that were generated by the respective root cause. Table 4 captures this result
via MatMult basic modified. This fix improves the overall performance by
32%. Subsequently, we focus on eliminating faults of type R.faultm∗h, as it oc-
curs 5688 times in the bug report. GRAB pinpoints that accesses to both input ma-
trices are exhibiting the faults. A potential fix for fault-typeR.faultm∗h is to move
data into shared memory (cf. Table 2). Therefore, we modify the implementation
such that input matrices are accessed from shared memory. Due to the limited
amount of shared memory, such accesses to shared memory must be performed in
separate chunks. These modifications lead to the solution MatMult best (simi-
lar to the one from [15]), which dramatically reduces the number of reported faults
(cf. Table 4) and improves the overall performance by 64% on real hardware.

For LBM basic, we focused on improving only one of the kernels (called
periodic boundary in [12]). Table 4 reports that fault-type R.faultmm has
the largest number of occurrences. This fault-type had multiple root causes. In
order to improve the performance, we focused on the root cause that generated the
largest number of faults (22574 in our evaluation). We observed that this root cause
indicates reading a global-memory location within a loop (cf. Figure 9(a)). To fix
this, we loaded the value in a register and replaced all its use via the register within
the loop body. This transformation is shown in Figure 9(b). However, we observed

24

that the instruction ‘‘reg aux1 = glob j’’ (cf. Figure 9(b)) induces 21140
faults of type R.faultmm. In order to reduce this effect, we analyzed the affected
locations and observed that the global-memory usage can further be reduced using
the modification in Figure 9(c). In particular, this modification reuses the same
global-memory location via the register aux2.

repeat

until (cond)

.........

reg aux1 = glob j

glob i = glob i + reg aux1

glob x = glob y + reg aux1

repeat

.........

until (cond)

glob i = glob i + glob j

glob x = glob y + glob j

repeat

until (cond)

.........

reg aux1 = glob j

glob x = glob y + reg aux1

reg aux2 = glob i

glob i = reg aux2

reg aux2 = reg aux2 + reg aux1

(a) (b) (c)

root cause

Figure 9: Modification strategies for Lattice Boltzmann case study. Keyword glob indicates the
usage of global-memory, whereas the keyword reg indicates the usage of auxiliary registers

Due to the nature of computations in the loop, we observed that modifications,
as in Figure 9, can be employed to two more statements that repeatedly read from
global-memory. This leads to LBM V1 that improves the performance by 24%
(cf. Table 4). LBM V1 still had 13684 faults of type R.faultmm, where 9063
were caused by a single root cause. This root cause was located in the second
loop of the kernel. We could apply the same strategy as in Figure 9. However,
we also noted that data-usage in the first-half of the second loop overlapped with
the data-usage in the first loop. We, therefore, split the second loop in half and
fused the top-half with the first loop. This modification leads to LBM V2, which
has significantly less reported faults of type R.faultmm and improves the overall
performance by 33%. We also compared the implementation LBM V2, as obtained
by using hints from GRAB and an implementation created by an experienced GPU
programmer (available in [12]) without using GRAB. Our comparison revealed
that the implementation LBM V2 outperforms the implementation generated by the
GPU programmer.

For Susan basic, susan principle small gpu [12] is the kernel we
focused on improving. Table 4 reports that fault-type R.faultm∗h has the largest
number of occurrences. As specified in Table 2, such faults can be reduced by
placing data into shared memory. Using the generated bug report, we located the
data that exhibit fault of type R.faultm∗h. Then we modified the code to initially
load the respective data from global memory into shared memory and subsequently,
perform all the computations in shared memory. We did this by restructuring the
GPU kernel to use as many threads in a thread block as the image width (512

25

in our case, see Table 3). This produced an implementation Susan modified,
which improves performance by 6%. It is worthwhile to mention that increasing the
number of threads per block in Susan basic to 512 did not change the execution
time.

Figure 10 shows the improvement percentage of the modified code versions,
compared to the original ones. The data has been compiled from the column “Ex-
ecution time” (i.e. second column) in Table 4.

-20

-10

 0

 10

 20

 30

 40

 50

 60

 70

T
ranspose_best

B
itonic_Sort_best

Scan_w
orkefficient

Scan_best

M
atM

ult_basic_m
odified

M
atM

ult_best

L
B

M
_V

1

L
B

M
_V

2

Susan_m
odified

Im
pr

ov
em

en
t(

%
)

Modified versions

Figure 10: Relative improvement in execution time with respect to the original versions

In order to evaluate whether the change guided via GRAB could lead to im-
provement in general, we have run the modified implementations with 100 random
input data sets. Figure 11 captures the average, minimum and maximum improve-
ments over such randomly generated inputs. As observed from Figure 11, only
Bitonic Sort Best does not provide better average performance, as compared
to the original implementation. As generated reports of GRAB are based on test
executions, in general, the suggestion of GRAB depends on the quality of tests.
For instance, GRAB-generated reports may not lead to improvement for a new
test, if such a test explores code not covered by the test suite used by GRAB. Due

26

to this limitation, we observe negative improvements in average performance for
Bitonic Sort. However, we believe that generation of better test cases, in order
to expose memory-related bottlenecks, is orthogonal to the problem addressed in
the paper. Of course, GRAB can always be combined with sophisticated test gen-
eration strategies that are specifically tailored to find memory-related bottlenecks
as well as obtaining better code coverage.

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

 70

T
ranspose_best

B
itonic_Sort_best

Scan_w
orkefficient

Scan_best

M
atM

ult_basic_m
odified

M
atM

ult_best

L
B

M
_V

1

L
B

M
_V

2

Susan_m
odified

Im
pr

ov
em

en
t(

%
)

Modified versions

Figure 11: Variation of improvement for random input data sets

Preceding examples demonstrate how GRAB can systematically help to im-
prove basic implementations to more efficient versions, either manually or via
hints to guide a compiler. Table 4 clearly indicates that the guidance obtained
from GRAB can generate efficient GPGPU programs, leading to improvements of
up to 64%, on real hardware.

RQ3: Can we use GRAB to select appropriate GPU platform?. We also evalu-
ate our debugging framework with different cache configurations as seen in Fig-
ure 12. Furthermore, Figure 12 is useful when the execution platform is not avail-
able and the system designer wants to select an appropriate GPU platform. For

27

instance, consider the Vivante GC2000 embedded GPU, which does not include
a shared memory, but includes a 4KB cache. From Figure 12, we can conclude
that Scan best, Scan naive and Bitonic best will run efficiently on this
GPU, as the number of interferences drop to zero with a 2KB cache. However,
the implementation Bitonic Sort basic will not run efficiently in the Vi-
vante GPU. In the preceding paragraph, we observed that an efficient version of
Bitonic Sort (i.e. Bitonic Sort best) can potentially use shared mem-
ory to reduce the interference in the cache. Since the Vivante GPU does not feature
a shared memory, the designer may potentially like to choose a different GPU plat-
form for the Bitonic Sort kernel.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1-way 128B

1-way 256B

1-way 512B

2-way 1KB

4-way 2KB

4-way 4KB

Fa
ul

ts
 re

po
rte

d

Cache size in bytes

Scan_best
Scan_naive

Bitonic_Sort_best
Bitonic_Sort_basic

Figure 12: Faults reported with respect to different cache size

Scheduling policies. It is worthwhile to mention that the GPU performance may
vary depending on the actual thread-scheduling policy. In order to stress this point,
we ran both basic and improved versions of GPU kernels for different scheduling
policies. Note that such an experiment can only be performed in a simulator, as
we cannot control the scheduling policy in real hardware. Table 5 reports our
findings. Table 5 clearly indicates that although the actual improvement might
vary, the fixes suggested by GRAB leads to more efficient GPU kernels regardless
of the scheduling policy.

28

Simulation cycles
Program name Greater then Loose round Two level

oldest (GTO) robin (LRR) (TL)
Bitonic Sort basic 31837 44265 36009
Bitonic Sort best 16446 15886 19250
MatMult Basic 118434 112738 112494

MatMult Basic modified 110023 105664 106682
MatMult best 22831 20604 21872
LBM basic 470074 500903 494320
LBM V1 254566 266084 248478
LBM V2 176690 187940 174754

Susan basic 176779 145125 167513
Susan modified 53701 48891 65189

Table 5: Evaluation for different scheduling policies

Debugging time. Our experiments were performed on a machine having a 2.9 GHz
Intel Core i5-4210H CPU and 12 GB RAM, running Ubuntu 14.04, 64-bit operat-
ing system. The overhead of GRAB is negligible and is only about 5% of the total
execution time of the simulator. The maximum execution time of the simulator,
in turn, was four minutes, as observed for LBM Basic. The negligible overhead
appears due to the efficient comparison between the original trace and the golden
trace (linear with respect to the length of execution). Moreover, we avoid repeat-
edly searching the same root cause (cf. Figure 7) to reduce the debugging overhead.

6. Related work

Profiling. Understanding the performance behavior of programs is a critically im-
portant problem. The state-of-the-art in performance debugging has long been
profiling [4, 5, 18, 19, 20]. Profilers are inadequate to fix performance bugs, due to
their inability to precisely highlight the location of performance wastage (instead
of hotspots) and root causes resulting such wastage. Although a recent work [21]
has proposed to highlight potential scalability problems in MPSoC platforms, it is
unable to provide the cause of such problems. In this paper, we aim to highlight
the cause of performance problems in the memory subsystems (e.g. caches), with
a specific focus on GPGPU programs. Moreover, our framework guarantees to
discover all cache misses that occur due to interferences across threads.

29

Record and replay. Replay debuggers [22, 23, 24, 25] can be used to record the
execution order between threads during a production run and the same order is
faithfully replayed to reproduce production-run failures. In contrast, our approach
automatically generates a hypothetical golden execution from the original execu-
tion. This golden execution is further used to localize memory interferences in
GPGPU programs and more importantly, to localize the cause of such interfer-
ences.

Automated debugging. Works on automated debugging [26, 27] have made ma-
jor inroads in the past few decades. Nevertheless, most of these works have pri-
marily concentrated on debugging functionality-related bugs. In general, debug-
ging performance-related bugs are more challenging than debugging functionality-
related bugs. This is due to the fact that performance bugs critically depend on
the underlying execution platform and there is a lack of understanding to clearly
distinguish a buggy execution in terms of performance. In this paper, we concen-
trate primarily on GPUs as the execution platform and we derived an automated
approach to distinguish execution scenarios that exhibit performance bugs.

Fault localization. Automated techiques on fault localization [28] aim to discover
the location of faults or the root cause of a failure. Automatic localization of
functionality-related faults is still an active research area. To find the root cause
of a performance-related fault, we face some unique challenges due to the lack
of appropriate timing models in programs. Therefore, existing techniques on au-
tomated fault localization cannot be directly adopted for localizing performance-
related faults. In this paper, we provided a novel approach to compare a failed
execution (in terms of performance) with an automatically computed golden ex-
ecution. Moreover, we also provided a methodology to leverage the information
from such executions and compute the root cause of memory-related failures in
GPUs.

Performance testing. Recent works on detecting performance bottlenecks [29, 30]
primarily concentrate at the software level, such as redundant computations and
misusage of function calls. On the contrary, we argue the importance of execution
platforms in the context of detecting performance bugs, with a specific focus on
GPUs. Our previous works on performance testing [14, 31] or other works on
testing GPGPU programs [32] concentrate on test-input generation and are not
directly applicable for localizing the root cause of performance bugs. In this paper,
we aim to localize the cause of memory interferences by systematically comparing
the original and the golden traces.

30

Empirical performance model. The performance characteristics of GPUs have
recently been studied via analytical models [33, 34, 35, 36]. In contrast to these
works, our approach has a significant flavor of software debugging, as we aim to
systematically highlight the root cause of memory-performance bottlenecks. Be-
sides, our approach does not depend on the approximation incurred in analytical
models.

Worst-case execution time analysis. In recent years, works on worst-case execu-
tion time (WCET) analysis for GPGPU programs has gained attention [37, 38].
Our approach is orthogonal to the approach taken in WCET analysis. Our aim
is not to statically predict a bound on WCET, instead we aim to concentrate on a
more general notion of memory performance bugs. In other words, our method-
ology has a significant flavor in terms of testing and debugging, compared to the
approaches proposed for WCET analysis. Besides, as our approach analyzes con-
crete executions, it does not suffer from the imprecision incurred in static WCET
analysis.

In summary, we extend the foundation of automated debugging and fault lo-
calization via localizing the cause of memory-related bottlenecks, with a specific
focus on GPGPU programs.

7. Discussion

In this paper, we have proposed GRAB, a systematic framework to localize
memory performance bottlenecks in GPGPU programs. We demonstrate the usage
of GRAB via several experiments on an NVIDIA Tegra K1 platform. Although
GRAB uses a simulator, we show that it is not needed for the simulator to imple-
ment exactly the same scheduler as the target platform, which is impossible since
the actual scheduling policies are not known. This has been demonstrated practi-
cally by running the programs on the real hardware and the produced performance
improvement (cf. Table 4). Besides, we have also shown that the fixes suggested
by GRAB improves performance regardless of the scheduling policy (cf. Table 5).

It is worthwhile to mention that we only detect performance bottlenecks due
to the interference across threads. GPGPU programs may also suffer from other
performance issues, such as due to uncoalesced memory accesses or due to an im-
balanced workloads among threads. Detection of uncoalesced memory accesses
can be reported by existing NVIDIA profilers [8]. However, the detection of im-
balanced workloads requires deeper analysis of GPGPU programs. GRAB is only
a first step towards building a performance debugger for GPGPU programs and we
are working to extend GRAB to detect more advanced performance bugs, such as
imbalanced workloads.

31

References

[1] NVIDIA Tesla, http://www.nvidia.com/object/
tesla-supercomputing-solutions.html.

[2] Vivante graphics core, http://www.vivantecorp.com/index.
php/en/technology/gpgpu.html.

[3] ARM mali T600 series GPU OpenCL, http://infocenter.arm.
com/help/topic/com.arm.doc.dui0538e/DUI0538E_mali_
t600_opencl_dg.pdf.

[4] T. Ball, J. R. Larus, Efficient path profiling, in: MICRO, 1996.

[5] J. R. Larus, Whole program paths, in: PLDI, 1999.

[6] Collect performance data with the collector, http://docs.
oracle.com/cd/E18659_01/html/821-2763/gkofq.html#
scrolltoc.

[7] Valgrind instrumentation framework, http://valgrind.org.

[8] NVIDIA GPU Profiler, https://developer.nvidia.com/
nvidia-visual-profiler.

[9] ARM Streamline Performance Analyzer, http://ds.arm.com/ds-5/
optimize/.

[10] A. Maghazeh, U. D. Bordoloi, P. Eles, Z. Peng, General purpose computing
on low-power embedded GPUs: Has it come of age?, in: SAMOS, 2013.

[11] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, T. M. Aamodt, Analyzing
CUDA workloads using a detailed GPU simulator, in: ISPASS, 2009.

[12] GRAB: systematic detection of memory related performance bottle-
necks in GPGPU programs, http://www.ida.liu.se/˜adrho74/
project/grab.shtml.

[13] CUDA toolkit documentation, http://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html.

[14] S. Chattopadhyay, P. Eles, Z. Peng, Automated software testing of memory
performance in embedded gpus, in: EMSOFT, 2014.

32

http://www.nvidia.com/object/tesla-supercomputing-solutions.html
http://www.nvidia.com/object/tesla-supercomputing-solutions.html
http://www.vivantecorp.com/index.php/en/technology/gpgpu.html
http://www.vivantecorp.com/index.php/en/technology/gpgpu.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0538e/DUI0538E_mali_t600_opencl_dg.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0538e/DUI0538E_mali_t600_opencl_dg.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0538e/DUI0538E_mali_t600_opencl_dg.pdf
http://docs.oracle.com/cd/E18659_01/html/821-2763/gkofq.html#scrolltoc
http://docs.oracle.com/cd/E18659_01/html/821-2763/gkofq.html#scrolltoc
http://docs.oracle.com/cd/E18659_01/html/821-2763/gkofq.html#scrolltoc
http://valgrind.org
https://developer.nvidia.com/nvidia-visual-profiler
https://developer.nvidia.com/nvidia-visual-profiler
http://ds.arm.com/ds-5/optimize/
http://ds.arm.com/ds-5/optimize/
http://www.ida.liu.se/~adrho74/project/grab.shtml
http://www.ida.liu.se/~adrho74/project/grab.shtml
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

[15] CUDA SDK code samples, http://developer.download.
nvidia.com/compute/cuda/1.1-Beta/x86_website/
samples.html.

[16] D. T. Thorne, C. Michael, Lattice Boltzmann modeling: An introduction for
geoscientists and engineers, Springer, 2006.

[17] S. M. Smith, J. M. Brady, SUSAN A new approach to low level image pro-
cessing, International journal of computer vision 23 (1).

[18] E. Coppa, C. Demetrescu, I. Finocchi, Input-sensitive profiling, in: PLDI,
2012.

[19] D. Zaparanuks, M. Hauswirth, Algorithmic profiling, in: PLDI, 2012.

[20] M. Kim, P. Kumar, H. Kim, B. Brett, Predicting potential speedup of se-
rial code via lightweight profiling and emulations with memory performance
model, in: IPDPS, 2012.

[21] S. Lagraa, A. Termier, F. Pétrot, Scalability bottlenecks discovery in MPSoC
platforms using data mining on simulation traces, in: DATE, 2014.

[22] G. Altekar, I. Stoica, ODR: output-deterministic replay for multicore debug-
ging, in: SOSP, 2009.

[23] D. Weeratunge, X. Zhang, S. Jagannathan, Analyzing multicore dumps to
facilitate concurrency bug reproduction, in: ASPLOS, 2010.

[24] D. Hower, M. D. Hill, Rerun: Exploiting episodes for lightweight memory
race recording, in: ISCA, 2008.

[25] J. Huang, C. Zhang, J. Dolby, CLAP: recording local executions to reproduce
concurrency failures, in: PLDI, 2013.

[26] A. Zeller, Isolating cause-effect chains from computer programs, in: Pro-
ceedings of the 10th ACM SIGSOFT symposium on Foundations of software
engineering, ACM, 2002, pp. 1–10.

[27] H. Agrawal, R. A. DeMillo, E. H. Spafford, Debugging with dynamic slicing
and backtracking, Software: Practice and Experience 23 (6) (1993) 589–616.

[28] J. A. Jones, M. J. Harrold, Empirical evaluation of the tarantula automatic
fault-localization technique, in: Proceedings of the 20th IEEE/ACM inter-
national Conference on Automated software engineering, ACM, 2005, pp.
273–282.

33

http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/samples.html
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/samples.html
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/samples.html

[29] G. Jin, L. Song, X. Shi, J. Scherpelz, S. Lu, Understanding and detecting
real-world performance bugs, in: PLDI, 2012.

[30] A. Nistor, L. Song, D. Marinov, S. Lu, Toddler: detecting performance prob-
lems via similar memory-access patterns, in: ICSE, 2013.

[31] A. Banerjee, S. Chattopadhyay, A. Roychoudhury, Static analysis driven
cache performance testing, in: RTSS, 2013.

[32] G. Li, P. Li, G. Sawaya, G. Gopalakrishnan, I. Ghosh, S. P. Rajan, GKLEE:
Concolic verification and test generation for GPUs, in: PPoPP, 2012, http:
//www.cs.utah.edu/formal_verification/GKLEE/.

[33] S. Hong, H. Kim, An analytical model for a GPU architecture with memory-
level and thread-level parallelism awareness, in: ISCA, 2009.

[34] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, W.-m. W. Hwu, An
adaptive performance modeling tool for GPU architectures, in: PPoPP, 2010.

[35] J. Sim, A. Dasgupta, H. Kim, R. W. Vuduc, A performance analysis frame-
work for identifying potential benefits in GPGPU applications, in: PPOPP,
2012.

[36] J. H. Lee, J. Meng, H. Kim, SESH framework: A space exploration frame-
work for GPU application and hardware codesign, in: PMBS, 2013.

[37] A. Betts, A. Donaldson, Estimating the WCET of GPU-accelerated appli-
cations using hybrid analysis, in: Real-Time Systems (ECRTS), 2013 25th
Euromicro Conference on, IEEE, 2013, pp. 193–202.

[38] K. Berezovskyi, L. Santinelli, K. Bletsas, E. Tovar, WCET measurement-
based and extreme value theory characterisation of cuda kernels, in: Pro-
ceedings of the 22nd International Conference on Real-Time Networks and
Systems, ACM, 2014, p. 279.

34

http://www.cs.utah.edu/formal_verification/GKLEE/
http://www.cs.utah.edu/formal_verification/GKLEE/

	Introduction
	System and Execution Model
	Overview
	Detailed Methodologies
	Intercepting Memory Requests
	Computing Execution Traces
	Locating Root Causes
	Generating Bug Report

	Evaluation
	Related work
	Discussion

