Cache-Aware Kernel Tiling: An Approach for System-Level
Performance Optimization of GPU-Based Applications

Arian Maghazeh*, Sudipta Chattopadhyay, Petru Eles* and Zebo Peng*
*Department of Computer and Information Science, Linkoping University, Sweden
TSingapore University of Technology and Design, Singapore

Abstract—We present a software approach to address the data
latency issue for certain GPU applications. Each application is
modeled as a kernel graph, where the nodes represent individual
GPU Kkernels and the edges capture data dependencies. Our
technique exploits the GPU L2 cache to accelerate parameter
passing between the kernels. The key idea is that, instead of
having each kernel process the entire input in one invocation,
we subdivide the input into fragments (which fit in the cache)
and, ideally, process each fragment in one continuous sequence of
kernel invocations. Our proposed technique is oblivious to kernel
functionalities and requires minimal source code modification.
We demonstrate our technique on a full-fledged image processing
application and improve the performance on average by 30%
over various settings.

I. INTRODUCTION

A GPU application often involves several kernels that are
inter-dependent in a fairly complex fashion. In such an ap-
plication, a holistic view of the application graph can expose
opportunities for performance enhancement often overlooked
by conventional kernel-specific optimizations. Our tool, named
KTILER, precisely takes this approach. The core idea is to
leverage the GPU L2 cache (shared by all multiprocessors
in the GPU) to accelerate the kernels whose performances
are limited by memory latency. Technically, KTILER splits a
kernel with large inputs into multiple smaller sub-kernels. The
exact nature of splitting (i.e., which kernels to split and the
number of sub-kernels and their input sizes) is determined so
that it increases the odds of finding the intermediate data in the
cache. The generated sub-kernels are then scheduled such that
data dependencies are respected. KTILER is mostly automatic
and works for various GPU-based applications.

GPU execution model. GPUs are massively parallel processors
capable of running thousands of threads in parallel. Using
the CUDA terminology, a thread is the smallest execution
unit and a kernel is a program that runs on the GPU. A
group of 32 threads form a warp. Threads in a warp execute
instructions in the lock-step fashion. A group of warps are
organized into a one-, two-, or three-dimensional thread block.
A block is executed on a GPU multiprocessor. A limited
number of concurrent blocks can reside on one multiprocessor.
Blocks execute independently from each other and are further
organized into a one-, two-, or three-dimensional grid of thread
blocks. The minimum grid size is one block.

Motivational example. Consider the example in Figure 1(a),
where an image of 256 x 256 pixels is first converted to a
grayscale image, by GPU kernel A, and then scaled down to
an image of 128 x 128 pixels, by kernel B. Both kernels have
two-dimensional grid and block sizes. For example, kernel A is

kernel B

(b)

Fig. 1. (a) Mapping two GPU kernel blocks, from two consecutive kernels, to
their input and output pixels. (b) Block dependencies between the two kernels

launched as a grid of 8 x 32 blocks, where each block contains
32x8 threads, specified as A <<< (8x32), (32x8)>>> in CUDA.
Threads in one block process a small fragment of the input
image (e.g., the yellow and red tiles on in and intm images
corresponding to blocks (0,0) of kernels A and B, respectively)
and produce a small fragment of the output image (e.g., yellow
and red tiles on intm and out images, respectively). In the
normal execution mode, kernel A is launched first and runs
to completion before it hands out intm as the input to kernel
B. In this mode, the probability of finding intm pixels in the
cache (as input to kernel B) diminishes rapidly as the size of
image in exceeds the cache size.

Alternatively, consider a scenario where two sub-kernels
are scheduled such that blocks (0,0)...(3,0) of kernel A are
processed before blocks (0,0)...(0,3) of kernel B. In such
a scenario, it is likely that the threads of sub-kernel B will
discover the fragment of intm image, as their input, in the
cache. This style of scheduling can be repeated until the entire
input image is processed. If we systematically split the blocks
of kernels A and B among sub-kernels, considering the cache
size, and subsequently interleave the sub-kernels, then most of
them are likely to find their respective inputs in the cache.

How KTILER differs from the state-of-the-art? Towards dimin-
ishing the memory bottleneck, existing hardware-based solu-
tions [1], [2], [3] introduce extra hardware-design complexity,
whereas existing software-based solutions [4], [5], [6], [7] are
either restricted to specific functionality or focus on optimizing
GPU kernels in isolation. KTILER does not require additional
hardware and can be used for most commodity GPU-based
systems. Moreover, our proposed approach neither requires
prior knowledge about an application nor is it restricted to
kernel-level optimization. Concretely, KTILER provides a flex-
ible mechanism to optimize GPU applications with multiple
inter-dependent kernels.

Tiling has been used to enhance the performance of GPU



Warp Issue Efficiency
No eligible warp ®One or more eligible

Issue Stall Reasons

B Memory Dependency Other

cycles

69% Cache hit rate = 35%

(@

37% Wmf%

cycles

cycles
Cache hit rate = 100%

(b)

79%

1
Fig. 2. Kernel performance at (a) default, and (b) 32 of the default grid size

kernels. In [8], the authors introduced a technique to split
concurrently executing kernels at runtime to improve resource
utilization. However, this technique requires the kernels to
be data independent. In [6], the authors proposed a tiling-
based technique to effectively use the scratchpad memory for
stencils. However, this technique is only applicable to stencils,
unlike KTILER, which is unaware of the kernel functionality.

Contributions. We introduce KTILER, a system-level tool
to improve the performance of cache-sensitive GPU-based
applications. We

1) propose a function-oblivious optimization technique that
leverages the shared GPU L2 cache to improve the perfor-
mance of cache-sensitive kernels (Section IV-C);

2) develop a tool to construct the dependency graph and obtain
memory footprints of arbitrary GPU-based applications at
block level (Section IV-B); and

3) apply KTILER to a full-fledged image processing applica-
tion composed of over a thousand kernels (Section V).

II. TILING IMPACT ON PERFORMANCE

Tiling improves the cache hit rate by eliminating cold
misses. These are misses that occur as data is accessed for
the first time by a thread. The impact of the grid size on
cache performance and the difference between the minimum
and maximum cache hit rates are kernel specific attributes. For
example, in a kernel with a high data locality per thread (e.g.,
a convolution filter), one cold miss is followed by multiple
hits; therefore, the minimum and maximum hit rates are both
high and the gap is small. Conversely, in a kernel with a low
data locality per thread (e.g., a scan algorithm), cold misses
have a large weight in determining the hit rate and the gap is
big. The first condition that a kernel must satisfy to be a good
fit for tiling is to have a reasonably large gap between the
cache hit rates at the default and at the minimum grid sizes;
in other words, there must be room for improvement by tiling.

Next, performance must be limited by memory accesses;
tiling is about reducing access time, and it is not useful if the
bottleneck lies on other factors (e.g., thread synchronization).

The third condition is that the data dependencies of the
kernel blocks must not depend on the input value. This is
required to be able to offline determine the dependencies of
the consumer (kernel) blocks on the producer blocks.

As a case study, we compare the performance of the Jacobi
kernel, used as part of an optical flow application (Section V),
at the default application grid size with a sub-kernel of 3%

[
=3

o Series 1: (405, 405) m Series 2:(1189, 2505)
Series 3: (1324, 800) @ Series 4: (1324, 2505)

9

S

[

Throughput (blocks per usec)

=}

S}

250 500 750 1000 1250
Grid size (number of blocks)

Fig. 3. Performance of the Jacobi kernel under different (GPU, MEM)
frequency (MHz) configurations

of the default size. Figure 2 shows the performance metrics
of the two kernels (provided by the NVIDIA profiler tool).
The kernel fulfills the three tiling conditions: the cache hit
rate goes up from 35% for the original kernel to 100% for
the sub-kernel; memory accesses make the major performance
bottleneck with memory-dependency stalls contributing to
64% of the total stalls; and the memory access pattern is
not input dependent. Observe that the increased cache hit rate
doubles the warp issue efficiency (a metric that indicates the
availability of eligible warps per cycle across the GPU) and
significantly reduces the memory dependency stalls.

Finally, the achieved performance gain must outweigh the
tiling overhead. There are two potential sources of overhead:
(i) tiling may harm the GPU utilization by reducing occupancy
or increasing work imbalance across the GPU multiprocessors;
(ii) it increases the overall inter-launch gap, which is the
idle time between consecutive kernel launches, by requiring
multiple sub-kernel launches. The latter, however, is not an
intrinsic characteristic of the kernel and can be mitigated; for
example, by improving the device driver.

In short, a kernel is suitable for tiling if it satisfies the
three tiling conditions and its performance gains outweigh
the tiling overhead. Figure 3 shows the relation between the
grid size of the Jacobi kernel and its throughput under four
different GPU/memory frequency configurations. In all series,
throughput initially increases with the grid size, as a result of a
higher GPU utilization, and then decreases up to a certain point
as cache performance degrades. There are several points worth
mentioning: First, instead of processing a thousand blocks in
one kernel launch under series-3 configuration, we can split
the workload into four sub-kernels of 250 blocks under series-
1 configuration. As a result, not only does the throughput in-
crease from 5 to 6.5 blocks per usec, but also the system power
decreases due to significantly lower GPU/memory frequencies
at series-1. Next, note that the maximum throughputs of series-
3 and series-4 (obtained at grid size 344) are almost the same,
even though the memory frequency in series-3 is less than
one-third of that in series-4. This is because at this grid size
the global memory requests are responded by the L2 cache
and are not directed to the global memory. However, as the
grid size increases, the hit rate decreases, until the throughput
of series-3 drops to half of that of series-4.

According to our study, some other kernels that respond well
to tiling include reduction, scan (Hillis Steele), bitonic sort
on large arrays, matrix multiplication on arrays with special
dimensions, matrix transpose, and Black—Scholes.



III. PROBLEM FORMULATION

The problem of tiling reflects the following question: “Given
an application graph (i.e., a graph whose nodes capture GPU
kernels and edges capture data dependencies) and an input size
(which determines the number of blocks in each kernel), how
to split the kernels and schedule the sub-kernels such that the
overall execution time of the application is minimized?” Our
approach is based on using the GPU L2 cache.

Let N C N be the set of application nodes, where each node
represents a kernel. Each kernel v € IV is split into a set of
sub-kernels S,,. We denote the i-th sub-kernel of kernel v as 5f,.
A schedule is defined as a partial order <., on the set of all
sub-kernels in the application graph, say G = . NS €S, 5t

For any two sub-kernels 6, 6;’: € G, we have 0Y < 07, iff

0¥ is scheduled before 55: The sub-kernels induce a partition
on the set of blocks processed by a kernel: Let us assume
B, is the set of blocks processed by kernel v and Bs;: is the
set of blocks processed by its i-th sub-kernel §¢. Then, for
any kernel v and 4;,0) € S,, we have Bs; N By = ¢ and
U 5ies, Bsi = By. We note that a valid schedule must adhere
to the data dependencies among all sub-kernels. We capture

the dependency between an arbitrary pair of sub-kernels §¥ and
’ . . ’ k ’
5, via the notation §¢ % 64, 1If 6Y = &Y

x’ ) z'
6Y and 67, are independent. ¥ depends on 67, iff any block in

Bgsy depends on any block in By, . Dependencies only exist

then sub-kernels

between blocks of different kernéis; within a kernel, blocks
are independent: 0¥ A 55: if z = 2. For any pair of blocks
B and B’, B depends on B’ iff a thread in B reads a memory
address previously written by a thread in B’.

GPUs potentially allow for executing blocks from several
kernels concurrently, provided that there are enough resources
on the streaming multiprocessor. Otherwise, the GPU executes
the kernels successively according to the order of invocations.
In practice, however, even a kernel with a low grid size often
fully occupies (but not necessarily fully utilizes) the multipro-
cessor. Therefore, in this work we assume that sub-kernels are
run successively and the final schedule is a total order on the
set of all sub-kernels. The total execution time (E£T") of the ap-
plication graph is then obtained by summing up the execution
time of all sub-kernels: ET(Sch) = 3, cp 5ies, ET(3)).
Our objective is to find the schedule with the minimum
execution time, Schop = argming., ET(Sch).

IV. METHODOLOGY

We first provide an overview of our technique and then
elaborate on each module in the subsequent sections.

A. High-Level System View

KTILER consists of two main modules: a block analyzer,
and a scheduler. The block analyzer provides block related
information to the scheduler, including (i) the dependency
graph, which captures data dependencies among all kernel
blocks, and (ii) the list of all memory lines that are accessed
by each block. The set of memory lines is used to obtain the
memory footprint of sub-kernels. KTILER takes the application
source code and a sample set of application inputs with a given
size. We note that different input sizes may lead to different

schedules because the number of blocks often depends on the
input size. However, inputs of the same size result in similar
grid sizes and identical block dependencies. Thus, for a given
input size, it is sufficient to generate the schedule only once.
KTILER integrates user-provided information. The informa-
tion consists of platform-specific performance characteristics
of the kernels, such as the execution times of the kernel with
different tilings and without it, and the degree of cache sensi-
tivity of the kernel with respect to its inputs (Section IV-C).
Given the inputs, KTILER uses a heuristic to generate
a schedule involving all sub-kernels. The schedule is then
enforced at runtime by slightly modifying the source code [9].

B. Block Analyzer

This module provides the block dependencies, used to retain
functional correctness, and the list of the memory lines ac-
cessed by each block, used to attain a high cache performance.

1) Constructing Dependency Graph: We construct a block-
dependency graph that captures the data dependencies between
blocks. Using such a graph, we ensure that a sub-kernel
is executed only after all its block dependencies are met.
Note that the application graph (like the one in Figure 4)
just captures the coarse-grained dependencies at the kernel
level and pessimistically assumes that all sub-kernels of a
consumer kernel can be executed only after the execution
of all sub-kernels in the producer. Therefore, the default
application graph is insufficient for tiling. For example, in
Figure 1(b), blocks (0,0)...(0,3) of kernel B only depend
on blocks (0,0)...(3,0) of kernel A and may be processed
immediately after them—and before other blocks of kernel A.

We construct the block-dependency graph in two stages:
First, we record a trace of memory accesses by all threads
during an execution of the application. For each memory
access, we record the effective memory address, the type of
access (e.g., load, store and atomic), target memory type (e.g.,
global, shared or texture memory), and access width (e.g., a 4-
byte operation). This step involves running the application on
the GPU and using the host (CPU) to record the trace. In the
second step, we process the recorded trace and construct the
dependency graph based on the block dependency relation.
We note that the memory trace is obtained for each thread.
Hence, the recorded trace contains fine-grained information
about GPU memory addresses accessed by each block. The
second step is performed entirely on the host.

To obtain the memory trace of an application, we use the
SASSI instrumentation tool [10]. SASSI allows developers to
inject user-level instrumentation code at specific instructions
or instruction types. A typical instrumentation involves the
following tasks: (i) Compiling the application with SASSI-
augmented compiler. This, in turn, enables callbacks to instru-
mentation handlers before or after the instrumented instruction.
(ii) Defining the instrumentation handler, compiling it, and
linking it with the application [10].

2) Providing Block Memory Lines: The block analyzer pro-
vides a list of the memory lines accessed by each block during
execution. This list is used by the scheduler to calculate the
memory footprint for each sub-kernel (Section IV-C2). A host
routine uses the memory trace to generate the list.



C. Block Scheduler

There are two pieces of user-provided information, which
KTILER uses to account for the performance characteristics
of each kernel on the specific platform. (The exact use of the
information will become clear in Section IV-C2.)

Edge weights. Each edge in the application graph is associ-
ated with a weight that reflects the cache-sensitivity of the
consumer node with respect to the input corresponding to that
edge. The weight is equal to the maximum amount of time
that can be saved if the corresponding input data reside in the
cache. If a node is non-tileable (Section II), we set the weights
of its input edges to zero [9].

Performance tables. These provide estimations regarding the
execution time of a kernel. Kernel execution time is defined
by two factors: the number of blocks (i.e., grid size) and the
inputs that are provided via tiling (and will likely be present
in the cache). To account for the second factor, each node has
a table for every combination in which a set of inputs are
provided by tiling. To reduce the number of tables, one may
consider only the inputs whose corresponding edge weights
are larger than a predefined threshold [9]. Each table contains
the execution times for several grid sizes—as provided by
the user. For the missing points, the duration is obtained by
interpolation. KTILER obtains the execution time of a kernel
by referring to the appropriate table based on the current tiling
and looking up the table by using the grid size as the index.

1) A Two-Phase Approach: The choice of which kernels to tile
and how to tile them involve conflicting design constraints. For
example, tiling a kernel into large sub-kernels may increase the
GPU utilization, but it also increases the memory footprints of
the sub-kernels, which may lead to a lower cache performance.
We break down the scheduling problem into two phases: (i)
node partitioning (coarse-grained scheduling), where nodes in
the application graph are grouped into clusters, and (i) cluster
tiling (fine-grained scheduling), which involves splitting the
nodes in each cluster into sub-kernels and scheduling the sub-
kernels. In the following, we describe these two phases.

Node partitioning. Let N C N be the set of nodes in the
application graph 7. A cluster C is defined as a connected sub-
graph over 7. For the sake of brevity, we capture a cluster C'
via the set of nodes defining the respective sub-graph. There-
fore, C C N. A set of clusters Uf;l C; defines a partition
over T iff (i) J;~, C; = N, and (ii) for any 4,5 € [1,m],
either C; N C; = 0 or C; = C;. We define a total order
C; <c C; between a pair of arbitrary clusters, which means
that all the nodes in cluster C; are executed before any node
in cluster C;. Concretely, C; <¢ Cj if C; is data-dependent
on C;, C 5 C; (ie., a node k; € C; is data-dependent
on some node k; € C;); or the two clusters are independent,
C; DI C; and C} B C;. A set of clusters inl C; defines a
valid partition iff U;ll C; defines a partition over 7, and if
Ci <c Cj, then C; 4 C;.

Cluster tiling. In this phase, we consider each cluster inde-
pendently and tile the nodes within a cluster into sub-kernels.
For an arbitrary cluster C, its tiling sequence is a totally
ordered set of all the sub-kernels generated within C' under

the relation <<, . Let &) denote the i-th sub-kernel of node
v € C and S, be the set of sub-kernels inducing a partition
on the blocks processed by kernel v (Section III). Therefore, a
tiling sequence for cluster C' is a totally ordered set on the set
of sub-kernels Go = U, cc Uies, 9. For any two arbitrary
sub-kernels §?,, 67, € G¢, the tiling sequence must respect data

uwr v
o . ok
dependency. Therefore, if 6% <<, 7, then & = 47,

Combining the two phases. As discussed above, our scheduling
algorithm first finds a totally ordered set of clusters under the
relation <, and then generates a tiling sequence for each
cluster as defined by the order <<, on sub-kernels within
a cluster. Thus, the final schedule is a totally ordered set
under <., Where the relation is straightforwardly obtained
via combining <¢ and <Scch. Intuitively, the objective of
phase one is to provide a valid partition with the minimum
cost, where the cost is the overall execution time of all
tiling sequences. The objective of the second phase, which
is executed interleaved with the first phase, is to find the best
tiling sequence for each cluster, i.e., one which minimizes the
overall execution time of all sub-kernels in the cluster. Below,
we present the heuristic that implements the two phases.

2) The Application Tiling Algorithm: Every step of the iter-
ative algorithm (Algorithm 1) involves both node partitioning
and cluster tiling. Initially, each node is assigned to a unique
cluster. The clusters are gradually enlarged by merging with
their adjacent clusters. In every iteration, merging occurs
between the two clusters with the highest weight on their
linking edge. As mentioned, the weight reflects the maximum
amount of performance gain achieved by merging the two
border nodes of the clusters. After merging, the resulting
partition replaces the old one only if it reduces the cost. To
compute the cost of a cluster, we first need to tile it. The cost
is then obtained by summing up the estimated execution times
of all member sub-kernels (using the performance tables).

Our proposed tiling algorithm (Algorithm 2) aims to max-
imize the GPU utilization while maintaining a high cache
performance. This is achieved by maximizing sub-kernel sizes
subject to a cache-performance constraint. An exact cache
analysis approach is not an efficient alternative. Moreover, it
requires knowing the detailed cache configuration, which is not
publicly available. Instead, we use the block memory lines, as
provided by the block analyzer (see Section IV-B), to compute
the memory footprint of a set of blocks. A constraint then
ensures that the obtained memory footprint is not larger than
the L2 cache size. We argue that using the memory footprint
as an indicator for cache performance is a viable choice: A
single block of contiguous memory addresses can fully reside
in the cache if its footprint is not larger than the cache size.
However, even if there are discontiguities in accesses, cache
conflicts are largely avoided if the number of discontiguities
is less than the associativity level of the cache, supposing that
a memory block is larger than one cache way.

Implementation of the application tiling algorithm. As in-
put, Algorithm 1 takes the application graph appGraph
(Section III), the default execution time of each Kkernel
kerExeTimes (Section IV-A), the edge weights weights, and
a predefined weight threshold thld (Section IV-C). Other in-



Algorithm 1: Application Tiling heuristic

Algorithm 2: ClusterTile heuristic

input : appGraph, kerExeTimes, weights, thld, inputs used by ClusterTile
output: Sch

foreach v; € appGraph do
C; + {vi};T; < {kernel(vi)};
C0; < kerExeTimes|v;];
push C; to P;
end
candidEdges <— Select(weights, thld);
SortDesc(candidEdges); eix <— 0;
while eix # end of candidEdges do
e < candidEdges[eix];
Ca < Cluster(src(e)); Cp <— Cluster(dest(e));
Cn < MergeOrder(C,, Cp);
Pump  (PU {Ca}) — {Cas Co}:
if Pyyp induces a valid partition on appGraph then
Tn, COy <— ClusterTile(Cy, ...);
if C0, < CO, + CO, then P <— Pimp;
16 remove e from candidEdges; eix <— 0;
17 else
18 |
19 end
20 end
21 foreach C; € P do
2 | Sch< SchUT;
23 end
24 return Sch;

e ® N AU oa W =

T T
noR W N =S

eix «+ eix + 1;

puts used by the cluster tiling algorithm (Algorithm 2) include
the block dependency graph blkDepGraph, the block memory
lines blkMemLines (Section IV-B), and the performance tables
perfTables (Section IV-C). Initially, we assign each node
to a unique cluster and set the cost of each cluster to the
default execution time of its kernel (lines 1-5). We pick a set
of candidate edges whose weights exceed the threshold, sort
them in descending order of the weight, and set an edge index
to point at the highest-weight edge (line 6-—7). In each iteration
of the while loop, we select the candidate edge at the index
(line 9). Then, we discover the respective clusters containing
the two ends of this edge (line 10) and merge these clusters
(line 11). If the new set of clusters induces a valid partition
(Section IV-C1) on the application graph (lines 12-13), then
we tile the merged cluster using Algorithm 2 (line 14), redefine
a new partition if the merged cluster reduces the cost (line 15),
remove the edge from the set of candidates, and set the index
to point at the next highest-weight edge (line 16). Otherwise, if
the resulting partition is not valid, we try the next edge without
removing the current one (line 18). The process continues until
the set of candidate edges is emptied or no more valid partition
can be created (line 8). Finally, the schedule is generated using
the tilings of the final set of clusters (line 22).

Implementation of the cluster tiling algorithm. Given a cluster,
Algorithm 2 provides the tiling sequence and its cost. We
iteratively assign the blocks to sub-kernels until all blocks
are assigned (line 3). Each iteration involves two rounds: (i)
bottom-up round (lines 4-10), which prepares the minimum
dependency requirements for processing block(s) of the leaf
node(s) (there can be more than one leaf node in the cluster),
and (ii) top-down round (lines 11-12), which tries to in-
crease data-reuse efficiency and maximize utilization. To better
understand these rounds, consider the kernels in Figure 1.
During the bottom-up round, block (0,0) of kernel B and
blocks (0,0)...(3,0) of kernel A are selected to be assigned
to sub-kernels J; and d;, respectively. Subsequently, during
the top-down round, blocks (0,1)...(0,3) of kernel B are also
added to sub-kernel ;. This is because the dependencies of

input : C; = {cy, ..., c;}, blkDepGraph, blkMemLines, perfTables

output: T;, CO;

C0; « O;

2 T; < (); assigned < (); newSubKBlks <+ 0;
while assigned # allClusterBlks do

w

/* Bottom-up round *
4 by < Select the next unassigned block(s) from bottom kernel(s);
5 push b, to toBeAssigned[v];
6 depList < FindAllDeps(byj, blkDepGraph); // direct and indir. deps.
7 while depList not empty do
8 by <— pop from depList;
9 if b, ¢ assigned then push b, to toBeAssigned[v];
10 end

/* Top-down round *
11 readyBlocks <—

FindMoreBlks(toBeAssigned U assigned, blkDepGraph);

12 foreach b, € readyBlocks do push by to toBeAssigned|v];
13 succeed <— CheckCacheConst(toBeAssigned, blkMemLines);
14 if succeed then
15 | foreach b, € toBeAssigned[v] do push b, to newSubKBlks[v];
16 else
17 foreach c, € C; do
18 subKer, < CreateSubKernel(newSubKBlks|v]);
19 C0; < CO0;+ ET(subKery, Ci, perfTables);
20 add newSubKBlks|v] to assigned|v];
21 add subKer, to T;;
22 end
23 if T; has not changed then return CO; < inf;
24 empty toBeAssigned & newSubKBlks
25 end
26 end

27 return T;, CO;;

these blocks are already covered by the dependencies of block
(0,0) of kernel B (as shown in Figure 1(b)). As a result, such
dependencies can be met using the cache lines holding the
corresponding data. Line 13 checks if the memory footprints
of the sub-kernel blocks (which are to be assigned) fulfill the
cache-size constraint. If the check succeeds, for each cluster
node c,, we add all the newly found blocks to its set of new
sub-kernel blocks newSubKBlks|v] (line 15). Note that each
element of newSubKB1lks is a set and items are added only if
they do not already exist in the set. If the check fails, it means
that the sub-kernels cannot be enlarged any more, without
disturbing the cache performance. At this point, we compose
the new sub-kernels out of the blocks that were iteratively
added to newSubKBlks (line 18). In lines 19-21, we acquire
the estimated execution time of the sub-kernel (by using the
cluster to find the correct performance table and the grid size
as the lookup index), update the cluster cost, mark the blocks
as assigned, and add the sub-kernels to the tiling sequence.
If, however, the algorithm does not manage to add any new
sub-kernel, it returns the maximum cost indicating that the
cluster cannot be tiled (line 23). Finally, toBeAssigned and
newSubKBlks sets are emptied to collect the remaining blocks,
which will be assigned to the next sub-kernels (line 24).

V. EXPERIMENTAL RESULTS

We use an Acer Aspire V15 laptop with NVIDIA GeForce
GTX 960M dedicated graphics card as our experimental
platform. The GPU has five Maxwell architecture streaming
multiprocessors with the total of 640 CUDA cores as well as
a 2 GB GDDRS dedicated memory and a 2 MB L2 cache.

As the test case, we select an image processing application
from the CUDA SDK. The application, called HSOpticalFlow,
provides a GPU-accelerated implementation of the Horn—
Schunck method [11] for optical flow estimation between



Fig. 4. DFG of the HSOpticalFlow application ({0} denotes a vector of zeros)

two frames. Optical flow is the pattern of apparent motion
of image objects between two consecutive frames caused by
the movement of object or camera [11]. The application is
composed of several major steps that run in succession. Each
step deals with a frame size that is equal to or is a fraction of
the original input frame size. For this experiment, we use three
major steps and two frames of 1024 by 1024 pixels. Figure 4
shows the application graph and the three steps (shown in
rectangles). The first, second, and third steps deal with frames
of 256, 512, and 1024 pixels on each dimension, respectively.
The number of JI nodes per step is set to the default value of
500. A JI node implements one iteration of the Jacobi method
to solve the corresponding linear equations. As JI nodes make
up 98.5% of the total execution time, and also as they are
more cache sensitive, we perform the tiling on these nodes.

We evaluate the effectiveness of KTILER under various
GPU/memory frequency configurations. For each configura-
tion, we measure the execution time of the application in
three modes: First, we run the application in the default mode.
Second, we run it according to the schedule produced by
KTILER. We obtain the execution time by taking the arithmetic
mean over 5000 runs. Third, we hypothetically assume that the
overhead of the inter-launch gap (IG), which is the idle time
between consecutive kernel launches, is zero. The purpose
of this mode (denoted as KTILER w/o IG in Figure 5) is to
evaluate KTILER based on the amount of time that is spent
on actual processing of the data. Moreover, as discussed in
Section II, the length of the IG can be reduced; for example, by
optimizing the device driver or by using software techniques
involving CUDA streams. To measure and then exclude the
IG, we use the NVIDIA Timeline View tool.

Figure 5 shows the results for various GPU/memory fre-
quency configurations. The percentage values over the bars
indicate the achieved performance gains of each KTILER mode
(i.e., with or without the IG) with respect to the default mode.
On average over the four configurations, KTILER improves the
performance by 25% with the IG (the middle bars in Figure 5),
and by 36% without it (the right bars).

We would also like to discuss the following observations:
First, regardless of the IG overhead, the performance gains of

1200
default

mktiler 51%
900 mktiler w/o IG
600 42%
49%
" T 11 II
,Cin 'ln

(1324,5010) (1189,5010) (1324,1600) (405,810)
Fig. 5. Impact of KTILER on overall execution time

Time (ms)

the two configurations with lower memory frequencies (i.e.,
810 and 1600 MHz) are larger than the other two. This is
because by lowering the memory frequency, the performance
bottleneck moves further towards memory-related stalls and
hence higher cache performance results in larger gains. Sec-
ond, the IG has a larger impact on performance when the
memory frequency is higher. The reason is that, as compared
to the kernel execution time, the length of the gap is less
dependent on frequency and thus the total gap length is
roughly the same for different configurations. Therefore, at
larger frequencies, where the kernel execution time is low, the
IG contributes more to the overall execution time and the gain
difference between the two KTILER modes is larger.

We mention that on our experimental platform, it takes
KTILER approximately twenty minutes to generate the sched-
ule for the given application and input set.

VI. CONCLUSION

We presented a novel software approach to accelerate ex-
ecution of GPU-based applications by exploiting the GPU
L2 cache as a communication means between the processing
nodes, instead of using the slow global memory. We also
identified the features that must be present in a kernel in order
to benefit from tiling.

REFERENCES

[1] J. S. Meena et al., “Overview of Emerging Nonvolatile Memory Tech-
nologies,” vol. 9, 2014.

[2] Y. Xie, “Future Memory and Interconnect Technologies,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2013.

[3] S. Yu and P. Y. Chen, “Emerging Memory Technologies: Recent Trends
and Prospects,” IEEE Solid-State Circuits Magazine, vol. 8, no. 2, pp.
43-56, 3 2016.

[4] F. N. Iandola et al., “Communication-Minimizing 2D Convolution in
GPU Registers,” in IEEE International Conference on Image Processing,
2013.

[5] C. Li et al., “Optimizing Memory Efficiency for Deep Convolutional
Neural Networks on GPUs,” in International Conference for High
Performance Computing, Networking, Storage and Analysis, 2016.

[6] P.S. Rawat et al., “Resource Conscious Reuse-Driven Tiling for GPUs,”
in International Conference on Parallel Architecture and Compilation
Techniques (PACT), 2016.

[7]1 F. Bistaffa et al., “Optimising Memory Management for Belief Propa-
gation in Junction Trees Using GPGPUS,” in International Conference
on Parallel and Distributed Systems (ICPADS), 2014.

[8] Y. Liang and X. Li, “Efficient Kernel Management on GPUs,” ACM
Transactions on Embedded Computing Systems, vol. 16, 2017.

[9] “Technical Report: Cache-Aware Kernel Tiling, An Approach for

System-Level Performance Optimization of GPU-Based Applications,”

https://bit.ly/2NUJ0sO.

M. Stephenson et al., “Flexible Software Profiling of GPU Archi-

tectures,” in Proceedings of The Annual International Symposium on

Computer Architecture, 2015.

B. K. P. Horn and B. G. Schunck, “Determining Optical Flow,” Artificial

Intelligence, 1981.

[10]

[11]


https://bit.ly/2NUJ0sO

