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Abstract
Compiler controlled memories or scratchpad memories offer more
predictable program execution times than cache memories. Scratch-
pad memories are often employed in multi-processor system-on-
chip (MPSoC) platforms which seek to meet the performance needs
of embedded applications while limiting power consumption and
timing unpredictability. Scratchpad allocation schemes optimize
performance while ensuring predictable execution times (as com-
pared to caches).

In this work, we develop a compile-time scratchpad allocation
framework for multi-processor platforms, where the processors
(virtually) share on-chip scratchpad space and external memory is
accessed through a shared bus. Our allocation method considers the
waiting time for bus access while deciding which memory blocks
to load into the shared scratchpad memory space. Incorporating
the bus schedule into our scratchpad allocation method leads to a
global optimization of an application, as compared to employing
local scratchpad allocation schemes in individual processors which
locally optimize the per-processor execution time. We evaluate
the efficacy, sensitivity and efficiency of our memory allocation
scheme on two real-world embedded applications - an application
controlling an Unmanned Aerial Vehicle (UAV), and a (fragment
of) an in-orbit spacecraft software.

Categories and Subject Descriptors C.3 [Special-purpose and
Application-based Systems]: Real-time and embedded systems

General Terms Design, Performance

Keywords MPSoC, WCET, Scratchpad, Shared bus

1. Introduction
Scratchpad memory (SPM) is a fast on-chip memory where the
content of the scratchpad is controlled by the compiler and/or man-
aged explicitly by the user. Therefore, the cost of each memory
access is predictable in presence of SPM. Due to this predictabil-
ity, scratchpads have been widely adopted for real-time embedded
software design instead of caches where the memory management
is entirely transparent to the user/compiler. However, explicit mem-
ory management by user is cumbersome and error-prone. Thus ex-
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tensive compiler support is required for the content selection into
scratchpad memories.

In this paper, we study content selection in shared scratchpad
memories for multi-processors system on chip (MPSoC) running
concurrent embedded softwares. Our goal is to reduce the overall
worst case response time (WCRT) of the application, represented as
a set of task graphs. MPSoCs usually contain an on-chip scratchpad
memory attached locally to each processing element (PE). How-
ever, a particular PE can also access other PEs’ SPMs remotely. On
the other hand, the external (off-chip) memory is accessed through
a shared bus among all the available processors in the chip.

Clearly, a processing element incurs a variable amount of de-
lay to access the shared bus due to the bus contention introduced
by other PEs. Since the requests serviced from on-chip SPMs do
not access the off-chip shared bus, shared bus traffic depends on
the content selection into the SPMs. On the other hand, content
selection into an SPM depends on the latency incurred by a main
memory access which in turn depends on the waiting time to ac-
cess the shared bus. The inter-dependency between bus contention
and scratchpad allocation motivates us to develop a new SPM allo-
cation technique. Our SPM allocation method incorporates the bus
schedule and hence results in a global performance optimization of
the application. For the shared bus, we assume a static bus schedule
using a Time Division Multiple Access (TDMA) scheme. Proces-
sors are statically assigned bus slots and the bus slots are allocated
among the PEs in a round robin fashion. An integrated SPM allo-
cation framework that considers the timing effects of shared bus in
multi-processor platforms is the main contribution of the paper.

To develop such an integrated SPM allocation framework for
multi-processors, we face many technical challenges. Since the
SPM space is shared among multiple PEs, it is important to use
the shared scratchpad space as much as possible for all the critical
tasks (i.e. all tasks lying in the critical path of the application)
which are responsible for higher WCRT. On the other hand, if
there are two processing elements PE1, PE2 and we fill up the
shared SPM by randomly placing items from the critical tasks
of PE1, it may drastically limit the WCRT improvement of the
application if the tasks running on PE2 are also critical. Our global
optimization scheme creates a unified view of all the items accessed
in different processors and iteratively allocates the item(s) suffering
from highest latencies to access the off-chip memory. We also
employ an optimization where variables from different independent
tasks may share the same SPM space through overlay due to their
disjoint lifetimes. This leads us to more utilization of available
shared SPM space.

Our allocation technique is iterative and we have used a cy-
cle accurate WCRT analyzer to evaluate our approach. Our case
study with real-life embedded applications such as an Unmanned
Aerial Vehicle (UAV) controller and an in-orbit spacecraft soft-
ware reveals that we can obtain significant WCRT reductions by



appropriate content selection and overlay in SPM. We have also
compared our approach with existing scratchpad allocation scheme
which locally optimizes the per-processor execution time without
being aware of variable bus delays. We have found that our ap-
proach can further improve the WCRT upto 70% compared to local
scratchpad allocation schemes.

2. System and application model
In this paper, our focus is on a multi-processor architecture, as
shown in Figure 1. The architecture contains multiple processing
elements (PEs) on a chip. Each PE owns a private scratchpad mem-
ory. With respect to a specific PE, the SPMs of other PEs are re-
ferred to as remote SPMs. A PE has dedicated access to its pri-
vate SPM with minimum latency. A PE can also access a remote
SPM through the crossbar connecting the processors. Access to a
remote SPM is relatively slower than accessing private SPM but
much faster than accessing the off-chip memory. In this work, we
assume that the latency to access remote SPM is bounded by a
small constant (since the on-chip links generally operate on high
bandwidth, this is a reasonable assumption). This kind of archi-
tecture essentially creates a virtually shared scratchpad memory
space (VS-SPM) among all the PEs [1]. If some item is not avail-
able in VS-SPM, a processor can bypass the VS-SPM and fetch the
memory block from slow external memory. A bypassing VS-SPM
space creates opportunities to avoid memory spill and reloading de-
lay as compared to its non-bypassing counterpart. Consequently, it
leads to a fully predictable memory access behavior of the under-
lying application. All traffic to/from the off-chip memory has to go
through a shared TDMA bus which is accessed in a round-robin
fashion among all the available PEs. All on-chip SPMs are non-
coherent. This helps the architecture to be free of all coherence
logic required otherwise. Since the SPMs are non-coherent, there
is always at most one copy of a particular variable in VS-SPM.

We focus here only on scalar and array variables in data mem-
ory. We assume fully separated buses and memories for both code
and data. Therefore, we ignore bus traffic arising from instruction
memory accesses.

We model an application as a set of task graphs where each
task is mapped to exactly one PE. Each task graph is a directed
acyclic graph which contains a number of tasks. Let us assume
{T1, . . . , TN} be the set of N tasks corresponding to all the
task graphs. A directed edge between two tasks Tx and Ty in a
task graph signifies that task Ty cannot start execution before Tx

finishes execution. We assume a multi-tasking execution model
and we use a fixed-priority preemptive scheduling. Our goal is to
derive a compile-time allocation of data variables into VS-SPM
and off-chip memory to reduce the application’s overall worst case
response time (WCRT).

3. Related work
The problem of content selection in scratchpad for sequential ap-
plications has been well studied. The memory objects considered
for allocation into the scratchpad can be program data (e.g., [2, 3])
or program code (e.g., [4]). Allocating program code requires addi-
tional care to maintain program flow, while allocating program data
generally calls for specific considerations depending on the type of
the data (global, stack, or heap).

Many of the works on scratchpad allocation for sequential ap-
plications (such as [5–7]) aim to minimize the average case exe-
cution time and energy consumption. Scratchpad allocation for re-
ducing worst case execution time of sequential programs has been
addressed in (e.g., [8, 9]) and most recently in [10]. However, con-
current applications require to consider task dependency and multi-
processor architectures require the modeling of shared resources.

PE-0 PE-1 PE-N

SPM-0 SPM-1 SPM-N

Shared off-chip data bus

Off-chip memory

External 
Memory 
Interface

MPSOC

……

switch

Figure 1. System Architecture

Therefore, none of the above techniques can directly be applied to
concurrent applications running on multi-processors.

Scratchpad sharing among multiple processes has been first
proposed in [11]. However, it does not focus on a multi-processor
architecture. Moreover, the application model in [11] does not
consider process interactions, whereas our framework can handle
applications specified in the form of a task graph.

Scratchpad sharing among different processing elements in
multiprocessor system-on-a-chip has also been explored by re-
searchers. SPM allocation framework for average case performance
improvement has been presented, among others, in [1] and [12]. A
different approach proposed in [13] uses dynamic configuration of
shared SPM space for reducing energy consumption. However, the
above mentioned techniques do not consider variable bus delays
and they are not useful for improving the worst case performance
of an application.

The work proposed in [14] is the closest to ours. It uses a static
SPM allocation scheme to reduce the WCRT of concurrent appli-
cations. However, there are two key differences between our work
and [14]. First, [14] ignores the waiting time to access the shared
bus. Secondly, the architecture explored in [14] only has a private
SPM for each processing element and the private SPM is shared
among different tasks by partitioning or overlay. Current commer-
cial processors such as Cell allow for the SPM space to be (virtu-
ally) shared among all the available processing elements. Our work
aims to optimize the WCRT of an application by accurate content
selection and overlay in this shared SPM space, by accounting for
the variable bus delays.

4. Overview of our SPM allocation framework
Figure 3 gives a high level description of our SPM allocation frame-
work. A bus aware and cycle accurate WCET analyzer computes
WCETs of individual tasks together with the external memory ac-
cess profile of each variable along the worst case execution path
(WCEP). WCRT analyzer uses a fixed priority preemptive schedul-
ing and computes the WCRT of overall application from individ-
ual WCETs of all tasks. As a by-product, the WCRT analyzer also
produces the lifetime of each variable (the time interval between
which a particular variable might be accessed) and critical path of
the application. The SPM allocator computes a set of allocation
decisions depending on the memory access profile of each vari-
able and the critical path of the application. An allocation decision
could be either to allocate some variable in shared SPM or to re-
voke a previous allocation decision (i.e., to reclaim the space from a
previous allocation decision and deallocate the corresponding vari-
able(s) from SPM). Since a set of allocation decisions might change
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Figure 2. (a) A sample code and its execution without SPM allocation (b) Execution of the code by two possible SPM allocations
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Figure 3. Overview of SPM allocation framework

the memory access statistics and the critical path, the critical path
is re-computed to produce a further set of allocation decisions.

It is important to note from Figure 3 that the only information
flow from the bus aware WCET analysis to our SPM allocator is
in the form of an external memory access profile along WCEP.
The nature of shared bus is entirely hidden to the SPM allocator.
Therefore, our SPM allocator is independent of the nature of shared
bus used by the underlying architecture. A bus-delay aware SPM
allocator is the primary focus of this work — we shall give the
motivation behind this now and discuss it further in Section 6.

An example Figure 2(a) shows a sample code and its execution
at PE-0 in presence of shared bus. “C” blocks in the control flow
graph (CFG) represent computations without external memory ac-
cess. The number inside each block corresponds to the fixed cost
of the computation. Only shaded blocks (marked with “M”) in the
CFG represent external memory accesses and hence might suffer
from variable bus delays. We assume an external memory latency
of 10 cycles and TDMA bus slot length is 20 cycles. Let us first ex-
amine the execution patterns of two loops (L1 and L2) when there
is no scratchpad. Last two parts in Figure 2(a) demonstrate the ex-
ecution behaviors of L1 and L2. We observe that references to M2

frequently suffer additional bus delays to access the off-chip mem-
ory. On the other hand, references to M1 hardly suffer any addi-
tional bus delay due to a perfect alignment with corresponding bus
slots most of the time. Consequently, final WCET of the example
program turns out to be 690 cycles.

We now consider an architecture with scratchpad memory
(SPM). Let us assume that private SPM latency is 1 cycle and
remote SPM latency is 4 cycles. For simplicity, we assume that we
can allocate either M1 or M2 in the SPM but not both due to space
constraints. A bus-unaware greedy SPM allocation (e.g. in [8])
scheme allocates variables to SPM by traversing them in decreas-
ing order of their access frequencies. Since the access frequency of
M1 (11) is higher than that of M2 (5), a greedy bus-unaware SPM
allocator will pick M1 as the potential candidate to be allocated in
the SPM. The modified execution flow is shown in the first part of
Figure 2(b). Even though loop L1 can now be completed in fewer
cycles, references to M2 still suffer high bus delays. This leads to
an optimized WCET of 581 cycles.

Now assume that we allocate M2 instead of M1 in the SPM
(second part of Figure 2(b)). Since M1 accesses are aligned to
the beginning of bus slots, they will not encounter any additional
bus delay as before. On the other hand, since M2 now has been
allocated to SPM, its references no more encounter any bus delay.
This leads to a better optimized WCET of 530 cycles.

A bus-unaware SPM allocation algorithm does not take into
account the bus delay encountered for memory accesses. In Figure
2, accesses of M1 inside loop L1 do not encounter any bus delay.
However, each access of M2 suffers additional bus delay. Careful
examination through Figure 2(a) reveals that references to M2
contribute more towards the program’s WCET than the references
to M1. Therefore, compared to M1, M2 is a better candidate for
SPM allocation in this example.

We shall illustrate the work-flow of our iterative SPM allocation
framework by using Figure 4. Here we shall take two tasks T1 and
T2 executing concurrently at PE-0 and PE-1 respectively (Figure
4(a)). Task T1 is the same program as shown in Figure 2(a). We
introduce a new task T2 as shown in Figure 4(a). A careful illustra-
tion similar to Figure 2(a) reveals that WCET of T2 is 480 cycles.
Both the PEs have private SPMs (SPM-0 and SPM-1). We assume
both the tasks start execution at time 0. Our goal is to minimize the
overall WCRT of the application containing tasks T1 and T2.

Our technique exploits the lifetime of variable access to effi-
ciently use the shared SPM space. Variable lifetime is indicated by
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Figure 4. Iterative SPM allocation scheme shown on two tasks T1,
T2 running on different processors. Task T1 is same as the example
in Fig. 2.

an interval as shown in Figures 4(b)-(d). The interval represents the
time span from the earliest time the variable could possibly be ac-
cessed to the latest time it could possibly be accessed. We construct
an interference graph from these intervals and produce a coloring
of the graph. Each individual color represents a group of variables
which are accessed at disjoint time intervals. Interference graph is
a globally unified graph which considers all the variables accessed
in different tasks running at different PEs. In very first iteration of
allocation (Figure 4(b)), we observe that the interference graph is a
complete graph. We choose M2 to allocate in SPM-0 as task T1 is
in the critical path (having larger WCET than T2) and previously,
we observed that M2 suffers more memory latency to access than
M1. After allocation of M1 into SPM-0, WCRT reduces (becomes
530 cycles) but the critical path does not change (i.e., task T1) and
the interference graph still remains to be a complete graph (Figure
4(c)). Therefore, our choice was to allocate M1 (accessed in task
T1) into SPM-1 instead of M3 (accessed in task T2). This leads to
a reduced WCRT of 480 cycles and we also observe that the crit-
ical path has switched to task T2 (Figure 4(c)). More importantly,
the interference graph is no longer a complete graph as M2 and M3
are being accessed at disjoint time interval (Figure 4(d)). Conse-
quently, M2 and M3 can share the same space in SPM-0 and we
allocate M3 too in SPM-0 (Figure 4(d)). After this final allocation,
WCRT further reduces to 464 cycles (recall that remote SPM la-
tency was assumed to be 4 cycles).

Now assume the presence of a bus-unaware SPM allocator
which locally optimizes per-processor execution time (as described
in [14]). It would have allocated M1 in SPM-0 (for M1 having
higher access frequency than M2) and M3 in SPM-1 (as remote
SPM allocation is not considered), resulting in a final WCRT of
581 cycles. This example demonstrates the effectiveness of our ap-
proach, as we can considerably improve the WCRT (464 cycles)
compared to [14].

5. Bus aware WCRT analysis
For bus-aware SPM allocation, we need to first perform a bus-
aware WCET analysis of each individual task. We use our previous
work on bus-aware, cycle accurate WCET analysis in [15] for the
allocation framework.

The outcome of a single task analysis is a metric Cv attached to
each variable v accessed in the task. Cv represents the total contri-
bution of variable v towards WCRT of the task. This contribution
includes the total waiting time to access the shared bus as well as
the total off-chip memory latency for all references of variable v in
the worst-case path. A TDMA bus scheduling policy is used where
a bus slot is interleaved among all the PEs in a round-robin fash-
ion. For rest of the discussion, we shall assume that there are a total
J number of processors and the bus slot length assigned to each
processor is Sl.

Computation of Cv A bus aware analysis computes the bus delay
for each memory reference that may potentially access the shared
bus. However, precise computation of this bus delay requires a vir-
tual unrolling of all the loops. Our previous work in [15] uses an
approximation to align the start of each loop iteration at the begin-
ning of a new bus schedule. The alignment avoids the virtual un-
rolling but it requires additional alignment cost for each loop itera-
tion and this cost is included in the WCET computation. Artificial
alignment of a loop iteration is not necessary if the loop does not
contain any memory reference that may access the shared bus. Let
us denote the average alignment cost of a single iteration of loop lp
by Δlp. To use the analysis for bus aware SPM allocation, let us as-
sume that freqmem represents the frequency of an off-chip mem-
ory reference mem along the worst case execution path (WCEP)
and ∂mem is the bus delay computed by the analysis for memory
reference mem. Further assume that MEM(v) returns the set of
all off-chip memory references of variable v and LP (mem) re-
turns the immediately enclosing loop of memory reference mem.
Given the above, we compute Cv as follows:

Cv =
X

mem∈MEM(v)

(∂
mem

+ LAT + Δ
LP (mem)

) × freq
mem

(1)

LAT represents the off-chip memory latency. Note that ΔLP (mem)

will disappear after all the variables accessed inside LP (mem) are
allocated in SPM. Therefore, variables incurring high memory la-
tency and accessed inside a loop with high alignment penalty are

preferred for SPM allocation. Consequently, ΔLP (mem) is added
as a component for computing Cv . It is interesting to notice that
the SPM allocator takes only the value of Cv as input. Therefore, a
more accurate analysis for computing Cv might easily improve the
result generated by our SPM allocator.

Lifetime of a task WCET analysis is carried out initially and
after each iteration of SPM allocation algorithm. Let us assume
wcet(ti, A) denotes the WCET of task ti under allocation A. For
lifetime computation, we assign four parameters to each task as fol-
lows: eStart(ti, A) (earliest start time), eF inish(ti, A) (earliest
finish time), lStart(ti, A) (latest start time) and lF inish(ti, A)
(latest finish time). Given an allocation A and the corresponding
value of wcet(ti, A), we can estimate the lifetime of task ti, de-
fined as the interval between the lower bound on the start time
(i.e., eStart(ti, A)) and the upper bound on the finish time (i.e.,
lF inish(ti, A)) of ti. This estimation takes into account the de-
pendencies among the tasks (partial ordering imposed by the task
graph) as well as preemptions. WCRT of the whole application con-
taining N tasks under allocation A is thus given by the following
equation:

WCRTfinal = max
1≤i≤N

lF inish(ti, A) − min
1≤i≤N

eStart(ti, A) (2)

WCRT analysis of a single task We consider a fixed-priority pre-
emptive scheduling. Therefore, we need to consider the preemption
cost of task ti. An application is periodic in nature. An application
is modeled as a task graph and one activation of the application is
the completion of this entire task graph. Therefore, all tasks in the
task graph have a common period and deadline which is the pe-
riod of the entire application. We denote the priority of a task ti

by pr(ti). Lower numbers are considered to be higher priority. The
assigned PE to a task ti is denoted by PE(ti). Assume that the set
of tasks which may preempt task ti is denoted by hp(ti). hp(ti) is



defined as follows:

hp(ti) = {tj | ti /∈ D(tj) ∧ tj /∈ D(ti) ∧ PE(tj) = PE(ti) ∧
pr(tj) < pr(ti) ∧ [eStart(tj , A), lF inish(tj , A)]

∩ [eStart(ti, A), lF inish(ti, A)] �= φ} (3)

D(ti) denotes the set of tasks which depend (directly or indi-
rectly) on task ti according to the partial order imposed by the task
graph. Therefore, hp(ti) denotes all higher priority tasks whose
lifetimes may overlap with that of ti in the same PE. WCRT of the
task ti is then computed by the following:

wcrt(ti, A) = wcet(ti, A) +
X

tj∈hp(ti)

wcet(tj , A)

+ |hp(ti)| × J × Sl

(4)

Since each task has the same period and deadline, a higher priority
task can preempt a lower priority task executing in the same PE
at most once. Preemption of a lower priority task will also disturb
the external memory access profile of the preempted task beyond
the preemption point, which may lead to additional bus delay.
Consequently, the delay encountered for a preemption can be at
most the worst case execution time of the preempting task together
with any additional bus delay encountered for preemption. Note
that |hp(ti)| × J × Sl bounds the additional bus delay. We ignore
the operating system overhead due to context switch. Nevertheless,
an upper bound on the context switch cost can easily be accounted
during the WCRT computation of ti (wcrt(ti, A)).

We have for each task ti: lF inish(ti, A) = lStart(ti, A) +
wcrt(ti, A). Further, the partial ordering of tasks in the task graph
imposes the constraint that a task ti can start execution only af-
ter all its predecessors have completed execution. In other words,
lStart(ti, A) ≥ lF inish(u, A) for all tasks u preceding ti in the
partial order imposed by the application task graph.

For WCRT analysis, we also need to compute the best case ex-
ecution time (BCET) of each task ti. BCET of ti under allocation
A is denoted by bcet(ti, A). We use the following for BCET com-
putation: (i) unless a variable is already allocated to some remote
SPM, its location is considered to be the private SPM (i.e., no ex-
ternal memory access is considered when computing bcet(ti, A)).
(ii) no preemption cost needs to be considered for BCET (the
best-case scenario). Therefore, for each task ti: eF inish(ti, A) =
eStart(ti, A) + bcet(ti, A). Further, due to the partial ordering of
tasks in the task graph, eStart(ti, A) ≥ eF inish(u, A) for all
tasks u preceding ti in the partial order imposed by the application
task graph.

6. Bus-delay aware Scratchpad allocation
In this section, we describe our iterative SPM allocation algorithm
in details. An optimal solution in our setting is clearly infeasible.
In presence of Q processing elements in the MPSoC, each variable
has Q + 1 possible places to reside (one in each SPM and the
external memory). Consequently, an exhaustive search requires to
explore (Q + 1)n possibilities with n variables, which is clearly
infeasible even if n is relatively small. Therefore, in the following
discussion, we propose an iterative heuristic which computes a
solution very fast and still overpowers previously proposed local
scratchpad allocation schemes.

In the following discussions, private SPM of a task refers to the
private SPM of the PE in which the task is running and with respect
to an SPM spmi, all tasks having private SPM spmi are considered
local. Similarly, remote SPM of a task refers to any SPM available
in the MPSoC other than the private SPM of the task.

Computation of variable lifetime An interval [lo(v), hi(v)] rep-
resents the lifetime of a variable v. lo(v) indicates the earliest pos-

sible time v could possibly be accessed and hi(v) indicates the lat-
est possible time for an access to v. These intervals are computed
initially and everytime after an SPM allocation decision is final-
ized. Under allocation A, lo(v) and hi(v) are computed as follows
(assuming v is accessed in task ti):

lo(v) = eStart(ti, A) + min
ri∈fref(v)

bcet(ti, ri, A) (5)

hi(v) = lStart(ti, A) + max
ri∈lref(v)

wcet(ti, ri, A)

+
X

tj∈hp(ti)

wcet(tj , A) + |hp(ti)| × J × Sl

(6)

Recall that eStart(ti, A) and lStart(ti, A) are the earliest and
latest start times of task ti under SPM allocation A. fref(v) and
lref(v) represent the set of first and last references (in topolog-
ical order) to variable v in task ti respectively. bcet(ti, ri, A) and
wcet(ti, ri, A) represent the best case and worst case execution
time spent from the beginning of task ti to reference ri, under al-
location A, respectively. To compute the latest reference time of
variable v, we need to consider the preemption cost. Recall that
hp(ti) represents the set of all tasks which may preempt task ti

and |hp(ti)| × J × Sl bounds any additional bus delay introduced
due to preemption. Therefore, Equation 6 finds the latest possible
time at which the variable v is accessed.

Interference graph We use the lifetime information of variables
to construct an interference graph GI = (VI , EI). Nodes of this
graph correspond to different variables. Recall that D(ti) denotes
the set of tasks which depend (directly or indirectly) on task ti

. There exists an edge between two nodes depicting variables u
(accessed in task ti) and v (accessed in task tj) if the following
condition preduv holds:

preduv = [lo(u), hi(u)] ∩ [lo(v), hi(v)] �= φ

∧ ti /∈ D(tj) ∧ tj /∈ D(ti) ∧ u �= v

(7)

The condition preduv represents the scenarios where two dif-
ferent variables u and v might be live at the same time and thus
cannot share the same memory space. As shown in the preceding,
two variables from two dependent tasks can never interfere. If u
and v are accessed by the same task ti, number of edges in GI is
reduced by checking whether u and v can be simultaneously live
using classical liveness analysis.

SPM allocation using the interference graph Interference graph
is used for sharing the available SPM space as much as possible.
Each node of the interference graph is assigned a weight. Nodes
having higher weight values are given preference for SPM alloca-
tions. We want to place data items which incur high memory la-
tency (including bus delay) into the SPM so that external memory
access is not needed. At the same time, we want to optimize the
critical path of the application and consequently, we want to place
data items which are accessed in the critical path, into the SPM.
Therefore, we assign a weight (gainv) to each vertex (v) in the
interference graph as follows:

gainv =

8><
>:

0, if v is not accessed in the critical path

or v is allocated in SPM

Cv, otherwise.

(8)

These weights are computed initially and everytime an SPM al-
location decision is made. Before going into the formal description



of the technique, we define the following notations that will be used
for rest of the discussion:

• area : VI → N, area(vi) denotes the size of a variable
represented by interference graph node vi.

• size : 2VI → N, size(S) denotes the size of largest variable in
set S that resides in external memory. Note that, if S forms an
independent set in the interference graph, size(S) is the total
space needed to allocate the entire set of variables S into the
SPM.

• refi ⊆ VI : Set of variables accessed in some task assigned to
PE i.

• spmi : Private SPM of PE i.

• SP : Set of all SPMs available in the MPSoC.

• capacity : SP → N, capacity(spmi) denotes the free space
in spmi.

• location : VI → {SP∪⊥}, location(vi) denotes the location
of a variable vi, location(vi) = ⊥ if vi is in external memory.

• ℘ : VI → 2VI , ℘(vi) denotes the set of variables sharing the
same SPM space with vi due to their disjoint lifetimes.

Formal description of the overall technique is given in Algo-
rithm 1. There are mainly two decisions associated with every iter-
ation of Algorithm 1: first, finding a set of variables for allocating in
SPM (maxIndependentSet function in Algorithm 1) and secondly,
finding space in shared SPM to allocate this set of variables (find-
SPMspace function in Algorithm 1). Broadly, our technique ex-
hibits a search algorithm with limited backtracking. A choice made
by the algorithm can be either final or can be backtracked depend-
ing on whether the choice improves application performance. The
search algorithm terminates when no new choice can be made.

We apply graph coloring to the interference graph, the result-
ing colors will give us groups of variables which are accessed at
disjoint time interval. Graph coloring using the minimum num-
ber of colors is known to be NP-complete. Therefore, we employ
Welsh-Powell algorithm [16], a heuristic method that assigns the
first available color to a node without restricting the number of col-
ors to be used. Algorithm 1 follows a reduced backtracking tech-
nique. Let us define weight of a particular color CL as the sum of
weights (gainv) of all vertices colored with CL. Each color in the
interference graph represents an independent set and the indepen-
dent set corresponding to the maximum weighted color contribute a
bigger chunk to the application’s overall WCRT. Therefore, in each
iteration of the algorithm, we choose a color that has the maximum
weight. If allocating an independent set IS into SPM reduces the
WCRT of the application, we finalize the allocation of IS and the
location of variables representing set IS is never changed further.
However, if allocating IS into SPM does not reduce the WCRT, we
maintain it in a list backlog as long as enough SPM space is avail-
able for WCRT improvement. When we run out of space, we search
through the backlog list to find a victim and reclaim the SPM space
assigned to it. The victim is chosen to be the one which occupies
maximum amount of space among all other elements in backlog list
(the term max

(∗,occ,∗)
backlog in Algorithm 1 computes this victim). If

the list backlog is empty and there is not enough SPM space to
allocate an independent set, the largest variable from the chosen in-
dependent set is removed to find a smaller independent set that can
be accommodated in free SPM space. Size of backlog list repre-
sents the maximum depth of backtracking. One could argue about
the backtracking depth being nonzero (for zero backtracking depth,
an independent set is never allocated to shared SPM unless it re-
duces the overall WCRT). However, we observe that more than one
independent sets (say IS1 and IS2) are often able to reduce the

Algorithm 1 MIS: SPM allocation by exploiting variable lifetime

1: Perform initial WCRT analysis to get the WCRT and critical path;
2: Construct interference graph GI and assign weight gainv to all its

vertices;
3: backlog := φ;
4: repeat
5: repeat
6: ISmax := maxIndependentSet(GI);

7: gain :=
X

v∈ISmax

gainv ;

8: /* gain is reset in two conditions: (a) all variables in critical path
are already allocated in SPM, (b) GI = φ, and consequently
ISmax = φ. The allocation is terminated at this point */

9: if (gain = 0) then
10: Finalize SPM allocation;
11: return;
12: end if
13: (IS, occ, Rspm) := findSPMspace(ISmax);
14: /* If SPM space cannot be found for set ISmax, some previ-

ously allocated space is reclaimed if available. Otherwise, largest
variable in ISmax is removed from GI to find a smaller inde-
pendent set */

15: if (Rspm = φ) then
16: (ISm, occm, spmi) := max

(∗,occ,∗)
backlog;

17: if (occm > 0) then
18: capacity(spmi) := capacity(spmi) + occm;
19: recompute the critical path and the weights gainv ;
20: backlog := backlog \ (ISm, occm, spmi);
21: else
22: Vmax := {vi ∈ IS | area(vi) = size(ISmax)};
23: GI := GI \ Vmax;
24: end if
25: end if
26: until (Rspm �= φ)
27: capacity(Rspm) := capacity(Rspm) − occ;
28: recompute the critical path and the weights gainv ;
29: if (WCRT is reduced after allocating IS in Rspm) then
30: backlog := φ;
31: recompute GI ;
32: else
33: /* remove the previously selected independent set from the inter-

ference graph and continue allocation with the remaining graph
*/

34: backlog := backlog ∪ {(IS, occ, Rspm)};
35: GI := GI \ IS;
36: end if
37: until (GI = φ)

WCRT if allocated together into the SPM, whereas, WCRT might
not reduce if either IS1 or IS2 is allocated to SPM but not both.
Therefore, even if the WCRT is not reduced after an allocation de-
cision, we expect that WCRT will reduce in future iterations and
we only discard such decision when there is not enough space for
a new allocation (recall that allocation decisions that did not lead
to WCRT improvement, are maintained in a separate list backlog).
The above-mentioned situation is encountered very often when the
cardinality of an independent set is very small or the expected gain
from the corresponding allocation decision is low. Consequently,
WCRT may improve only by allocating more than one independent
sets together. Finally, the interference graph GI is recomputed only
if the WCRT is reduced. This is to ensure that the set of edges in
GI monotonically decreases — a crucial property that maintains
the correctness of our algorithm (Theorem 6.2).

We use a heuristic as described in Algorithm 2 to find SPM
space for a given independent set ISmax. Note that we only need
to find an SPM to allocate the independent set ISmax \ Vspm,
where Vspm(⊆ ISmax) is a set of variables already allocated in



Algorithm 2 findSPMspace: Finding SPM space for a set of vari-
ables ISmax having disjoint lifetimes. Total number of processors
is J .

1: /* If some variable ∈ ISmax is already allocated in SPM, it is checked
whether the space can further be shared with the current set of variables
ISmax */

2: Vspm := {vi ∈ ISmax | location(vi) ∈ SP};
3: IS := ISmax \ Vspm;
4: /* Required space in SPM for independent set ISmax */
5: occ := size(ISmax);

6: if (∃vi ∈ Vspm. occ ≤ area(vi) ∧
^

x,y∈IS∪℘(vi)

¬predxy) then

7: return (IS, 0, location(vi));
8: end if
9: /* Try to minimize the latency incurred by the costliest subgroup in

ISmax */

10: cg(i) :=
X

v∈ISmax∩refi

gainv , ∀i ∈ [1,J ];

11: if (∃i ∈ [1,J ]. cg(i) = max
k∈[1,J ]

cg(k) ∧ capacity(spmi) ≥ occ)

then
12: return (IS, occ, spmi);
13: end if
14: /* Find a scratchpad having maximum remaining space and has least

interference from locally executing critical tasks */
15: intf := {u | u ∈ VI ∧ ∃v ∈ IS. preduv};

16: hr(spmi) :=
capacity(spmi)−occX

v∈intf∩refi

gainv

, ∀i ∈ [1,J ];

17: if (∃i ∈ [1,J ]. hr(spmi) ≥ 0 ∧ hr(spmi) = max
k∈[1,J ]

hr(spmk))

then
18: return (IS, occ, spmi);
19: end if
20: return (IS, 0, φ);

the SPM space. Choosing an SPM for allocating a group of non-
interfering variables has a space vs quality trade-off. Since, a group
of variables are sharing the space, it will create opportunities for
more variables to be accommodated in SPM. On the other hand, as
the interference graph is a globally unified graph, a group may con-
sist of variables that are accessed in different processors. Therefore,
if the group is allocated the same space, some variables in the group
might be accessed remotely and thereby limit the WCRT improve-
ment. Since a very limited amount of SPM is normally available
in a processor, our primary focus is to utilize the available space
with maximum possible sharing. Therefore, in the first step of our
heuristic, we check whether the set of variables ISmax can share
SPM space with some variables already allocated in SPM. How-
ever, if our first step is unsuccessful, we try to improve the WCRT
by minimizing the latency incurred by the costliest subgroup in
ISmax. A costliest subgroup is a set of variables in ISmax that
are accessed in the same processor and have maximum cumulative
weight (sum of the elements’ weight gainv). Consequently, if suf-
ficient space is available, we allocate ISmax \ Vspm in the private
SPM of the processor accessing this costliest subgroup. In our final
step, we choose an SPM that has the maximum remaining space
and has minimum interference with ISmax \ Vspm from locally
executing critical tasks. We try to minimize the possibility of high
interference in the private SPMs of critical tasks at this final stage.

Following three theorems highlight certain crucial properties of
our allocation technique. We only provide the proof sketches here,
detailed proofs have been removed due to space constraints.

Theorem 6.1. Set of edges in the interference graph monotonically
decreases over different iterations of Algorithm 1.

Proof. We prove this by contradiction. In Algorithm 1, we recom-
pute GI if and only if WCRT is reduced. Let us assume a specific
recomputation of GI as Gm+1

I = (V m+1
I , Em+1

I ) and assume that
the set of variables allocated to SPM is Am+1. Further assume, the
immediate last recomputation of GI was Gm

I = (V m
I , Em

I ) and
had a set of SPM-allocated variables Am. Clearly, Am ⊆ Am+1

and VI\Am+1 ⊆ VI\Am where VI is the set of all variables. More
over, locations of the set of variables Am are never changed after
computing Gm

I . By contradiction, assume Em
I ⊂ Em+1

I . When
computing WCRT with allocation Am (Am+1), location of the set
of variables VI \ Am (VI \ Am+1) is taken as off-chip memory
to exploit the worst-case scenario. On the other hand, BCET com-
putation under allocation Am (Am+1) takes the location of the set
of variables VI \ Am (VI \ Am+1) as private SPM to exploit the
best-case situation. Close inspection of Equation 7 reveals that the
property Em

I ⊂ Em+1
I can only be satisfied in following two con-

ditions: first, WCRT of some task (or task fragment) is compara-
tively higher with allocation Am+1 than with allocation Am. It is
not possible as Am ⊆ Am+1 and on-chip SPMs have lower la-
tencies than off-chip memory. Secondly, BCET of some task (or
task fragment) is more with allocation Am than with allocation
Am+1. By a similar reasoning we argue that it is also not possi-
ble as VI \ Am+1 ⊆ VI \ Am and private SPM has the lowest
latency.

Theorem 6.2. Set of variables sharing the same space in SPM can
never have interfering lifetimes across different iterations of SPM
allocation in Algorithm 1.

Proof. Two variables vi and vj could be allocated at the same space
in shared SPM only if the edge (vi, vj) /∈ EI . However, according
to Theorem 6.1, set of edges in GI monotonically decreases. There-
fore, the property (vi, vj) /∈ EI must be satisfied in all future iter-
ations of Algorithm 1 (i.e., after the iteration where vi and vj had
been alloted the same SPM space). Consequently, set of variables
occupying the same space can never have interfering lifetimes.

Time complexity We propose the following theorem to analyze
the complexity of our iterative allocation framework:

Theorem 6.3. Let us assume |VI | is the total number of vari-
ables in the interference graph. Total number of iterations in our
framework (bound of the outer loop in Algorithm 1) cannot exceed
|VI |(|VI |+1)

2
.

Proof. Let us assume that after a specific recomputation of GI , X
is the number of variables residing in off-chip memory and T (X) is
the number of remaining iterations in Algorithm 1. In the worst case
scenario, T (X) follows the recurrence T (X) = T (X − 1) + X .
In the worst case, interference graph could be a complete graph
in every iteration, making the size of selected independent set by
maxIndependentSet exactly 1. Consequently, at most X itera-
tions might be required to finalize an SPM allocation decision (be-
cause all previous X − 1 choices may not lead to WCRT reduction
and subsequently put into the backlog list). Assume that the vari-
able vX is chosen for SPM allocation at X-th iteration. Note that,
if WCRT is not improved after allocating vX , Algorithm 1 will
be terminated. Similarly, if WCRT improves after successfully al-
locating all X variables in SPM, Algorithm 1 also terminates as
there are nothing more to allocate in SPM. Therefore, to visualize
the worst case situation, we assume that backlog list is emptied
out at X-th iteration to accommodate vX in SPM and allocation
of vX improves the WCRT. Since allocation of vX leads to X − 1
variables in off-chip memory, it will require T (X − 1) iterations
more for Algorithm 1 to terminate. Solving the recurrence we get



T (X) = X(X+1)
2

. Since there are a total of |VI | nodes in the in-
terference graph, maximum number of iterations in Algorithm 1 is

bounded by
|VI |(|VI |+1)

2
.

In practice, though, above theoretical bound is not reached. It
is mostly because of the two reasons: first, the interference graph
is hardly a complete graph in any iteration and secondly, search
depth to finalize an allocation decision is much lower than the
number of variables residing in off-chip memory. We shall see in
the experimental section that our framework converges quickly.

7. Experimental evaluation
Benchmarks We have used two real-life embedded applications
to evaluate our scratchpad allocation schemes. Our first case study
corresponds to a large fragment of DEBIE-I DPU Software [17],
an in-situ space debris monitoring instrument developed by Space
Systems Finland Ltd. We model this fragment as a task graph,
shown in Figure 5. The number beside each task in Figure 5 shows
the assignment of tasks to different PEs. Code size of the tasks
varies from 448 bytes to 23288 bytes (average code size 8825
bytes) whereas the data size varies from 18 bytes to 66972 bytes
(average data size 55448 bytes).
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Figure 5. Task graph extracted from DEBIE-DPU
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Figure 6. Task graph of papabench

Our second case study is the Unmanned Aerial Vehicle (UAV)
control application from papabench [18], a derivation from the
real-time embedded UAV control software Paparazzi. The con-
troller consists of two main functional units, fly by wire and au-
topilot, which are inter-connected by SPI serial link. fly by wire
unit is responsible for managing radio-command orders and servo-
commands, while autopilot runs the navigation and stabilization
tasks of the aircraft. One scenario in the manual mode is modeled
as a task graph and is shown in Figure 6. The number beside each

task in Figure 6 shows the assignment of tasks to different PEs.
Code size of the tasks varies from 96 bytes to 6468 bytes (average
code size 1903 bytes) whereas the data size varies from 130 bytes
to 1878 bytes (average data size 1105 bytes).
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Experimental setup We have implemented our allocation algo-
rithm inside a cycle accurate WCRT analyzer. Our full experimen-
tal setup is shown in Figure 7. We shall use the terminologies shown
in Figure 7 for rest of the discussion in this section. Let us as-
sume WC represents the scenario where all variables are accessed
from external memory. Similarly, BC represents the scenario where
all variables are accessed from private SPM. Therefore, WC and
BC provide upper and lower bound of optimized WCRT value re-
spectively. To check the improvement by our SPM allocator (re-
sult shown by “MIS” in Figure 7), we measure the ratio WC

MIS
− 1.

Clearly, BC is a measurement of best possible scenario when all
variables are accessed from private SPM and WC

BC
− 1 bounds



Size of Analysis
interference graph statistics

Benchmark Nodes Edges Iterations Time WC (cycles)

debie 283 27688 99 88 secs 3773 × 106

papabench 506 16872 210 119 secs 515 × 103

Table 1. Problem size, analysis time and WCRT

the best possible improvement. We compare our improved WCRT
with a bus-unaware allocator (result shown by “NOBUS” in Figure
7) that optimizes the content selection in individual private SPMs
(similar to the SPM allocator described in [14]). Improvement from
NOBUS is similarly measured as WC

NOBUS
− 1. We also check the

effect of our Algorithm on average case response time (ACRT)
by running the application using random inputs with and without
our final SPM allocation decision (results shown by “SIM(MIS)”
and “SIM(WC)” in Figure 7 respectively). Both “SIM(WC)” and
“SIM(MIS)” are obtained using a cycle accurate simulator. ACRT

improvement using our technique is measured as
SIM(WC)
SIM(MIS)

− 1.

We assume a single in-order pipeline for each processor. Each
processor can access its private SPM in a single cycle. Our exper-
imental results (i.e. WCRT of the application) mainly depend on
four different micro-architectural parameters whose default values
are configured as follows: i) total size of shared scratchpad space
(relative to total data size in the application): 10%, ii) remote SPM
latency: 4 cycles, iii) off-chip memory latency: 30 cycles, iv) round-
robin TDMA bus slot length: 50 cycles and v) number of PEs: 4.
We have carried out experiments with two processors and with four
processors. For all experiments with two PEs, we combine the tasks
running in PE 2 and PE 3 to run in one PE and combine rest of
the tasks to run in another PE. We perform all our experiments
in a 3 GHz Pentium IV machine having 1 GB of RAM and run-
ning Ubuntu 8.10 as the operating system. Table 1 gives an idea
about the problem size and time taken by our iterative SPM allo-
cator in default configuration. The time shown in Table 1 features
the total time, including the time taken by repeated computations
of bus-aware WCET and SPM allocation decisions by Algorithm
1. In general, none of our reported experiments takes more than 2
minutes to complete.

Sensitivity of WCRT reduction with respect to SPM size Figures
8(a)-8(b) demonstrate WCRT improvement for different SPM size.
SPM size is chosen in a way such that sufficient amount of inter-
ferences take place among all data items (to accommodate them
in shared SPM space). Above figures clearly demonstrate that we
can obtain significant WCRT reduction by using our SPM allocator.
For debie, an upper bound on WCRT improvement or the measured
ratio WC

BC
− 1× 100% is 1500% (700%) using 4 PEs (2 PEs). Sim-

ilarly, for papabench, the upper bound on WCRT improvement is
710% (410%) using 4 PEs (2 PEs). WCRT is consistently improved
with bigger SPM size, which is expected as the interferences among
data items reduce with bigger SPM size. Interferences among data
items also reduce when more processors are used. Since debie has
much smaller number of tasks compared to papabench, the reduc-
tion in interferences for papabench is much higher compared to
debie when more processors are used. We observe the situation in
our result – for debie, WCRT improvement hardly gets affected
with more processors, whereas for papabench, WCRT is improved
upto 100% when 4 processors are used instead of 2. Finally, our
SPM allocator can improve the WCRT considerably compared to
a bus-unaware allocator — with a maximum improvement being
more than 60%.

Sensitivity of WCRT reduction with respect to bus slot length
We have also measured the sensitivity of our allocator with bus slot
length. This measurement is shown in Figures 8(c) -8(d). Average
improvement from our SPM allocator is 52% (46%) for debie

(papabench) when compared with a bus-unaware SPM allocator
over a bus slot length range of 40-80 cycles.

Summary of other results To test the robustness of our approach,
we have measured its sensitivity with different remote SPM laten-
cies. Figure 8(e) demonstrates this result both for papabench and
debie. In contrast to the bus unaware allocator, WCRT improve-
ment from our SPM allocator decreases with increased remote SPM
latency, as fetching memory blocks from remote SPM now takes
more time. Nevertheless, the rate of decrement is quite low (maxi-
mum 5%) and the average improvement over bus unaware allocator
remains at 55% over a range of 4-12 cycles remote SPM latency.
We have also checked the WCRT improvement by varying off-chip
memory latency. When checked with different off-chip memory la-
tencies over a range of 10-50 cycles, the percentage reduction in
WCRT remains similar (to Fig. 8). Finally, we have also measured
the effect of our WCRT oriented optimization on average case re-
sponse time (ACRT). Unfortunately, the inputs to debie are not
available in public domain, which prevents us from running sim-
ulation and producing ACRT in debie. Therefore, we present the
result of ACRT improvement for papabench (in Figure 8(f)). As
our SPM allocator aims to optimize WCRT and the critical path,
we observe that reduction in ACRT is not much compared to the
same in WCRT. As evidenced by Figure 8(f), ACRT is reduced by
130% on average over a varying range of scratchpad size.

8. Extensions and Future Work
Applications using shared variables Our current implementation
does not handle shared variables among different tasks. More pre-
cisely, our allocation framework only considers the set of variables
which are accessed by exactly one task. However, our allocation
method can be modified to deal with shared variables as follows:
first, there will be at most one copy of each shared variable in
the SPM space to maintain coherency. Secondly, a shared variable
may be accessed by critical as well as non-critical tasks. There-
fore, when we compute the metric gainv (refer to Equation 8) for
a shared variable v, gainv is set to be the sum of Cv values only in
the critical tasks (i.e., references to shared variable v in all non-
critical tasks are ignored). Thirdly, lifetime of a shared variable
must take into account all the tasks (in application) in which the
shared variable might possibly be accessed. In future, we plan to
extend our work to include shared variables.

Other multi-processor architectures Our underlying architecture
contains a crossbar to access fast on-chip memories. However,
some of the architectures [19] use a fast on-chip bus for access-
ing a remote SPM. Since the on-chip buses operate on high band-
width, remote SPM latency is still bounded by a small constant.
Consequently, our SPM allocation framework can be applied with-
out modification.

ACRT optimization Interference graph in our SPM allocation
framework is used for finding a group of variables having disjoint
lifetimes. Therefore, interference graph can also be used for other
kind of optimization which allows SPM space sharing among dif-
ferent variables. Only driving factor for WCRT oriented optimiza-
tion is the assigned gainv metric for each variable v. For ACRT op-
timization, a trace can be collected using a simulator, which will in-
clude the external memory access profile along the most frequently
accessed path π. gainv will represent the total latency incurred (in-
cluding the bus delay) to access variable v along π. Only non-trivial
task is to efficiently recompute gainv after an allocation decision.
In future, we plan to check the efficacy and scalability of our allo-
cation framework for ACRT guided optimization.
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Figure 8. Experimental evaluation of our allocation framework

9. Conclusion
In this work, we have presented our scratchpad allocation frame-
work for multi-processor system-on-chip (MPSoC) platforms. The
prime novelty in our work is to incorporate the bus schedule into
the multi-processor scratchpad allocation scheme. Our allocation
framework exploits the shared scratchpad space available in MP-
SoCs, and considers variable lifetimes to efficiently utilize the
available shared scratchpad space. As evidenced by our experi-
ments, our scratchpad allocation scheme is able to significantly
reduce the WCRT of real-life embedded applications. Our results
are considerably better when compared with an existing SPM allo-
cation framework. Our allocation method is efficient and thus the
scalability of our framework is evident.
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