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Abstract. Multi-core processors have penetrated the modern computing plat-
forms in several dimensions. Desktop machines, handheld devices and advanced
embedded systems are now equipped with high-performance and energy-efficient
multi-core systems. Multi-core systems aim to achieve high-performance via run-
ning computations in parallel. However, such systems also employ shared re-
sources, such as shared caches and shared buses. The presence of parallel com-
putations increases the congestion in such shared resources, leading to poor ex-
ecution time. For embedded and real-time software, such performance loss is
particularly undesirable. This is due to the reason that most embedded systems
need to satisfy some extra-functional constraints, such as time.
In modern computing platforms, memory subsystems are several magnitudes
slower than the processor. In order to bridge such performance gap between
processor and memory, caches are employed by designers. Therefore, software
performance may degrade drastically due to the congestion in shared caches, on
multi-core systems. The congestion in the shared-cache critically depends on the
order of memory-access operations. In this paper, we propose MESS, a perfor-
mance debugging framework for embedded, multi-core systems. MESS systemat-
ically discovers the order of memory-access operations that expose performance
bugs due to shared caches. We build a compositional approach that initially mon-
itors the performance of each core in isolation and generates a performance sum-
mary for each core. Subsequently these summaries are used to build a constraint
system. The solution of the constraint system reveals the interleaved memory-
access-pattern that leads to a performance bug. Our baseline framework does not
generate any false positive. Besides, its failure to find a solution highlights the ab-
sence of performance bugs due to shared caches, for a given input. Our baseline
framework can also be employed to derive the memory access-order that leads to
the worst-case shared-cache performance, for a given input. Finally, we propose
an approximate solution that dramatically reduces debugging time, at the cost of
a reasonable amount of false positives. We have implemented our entire frame-
work using Simplescalar simulator and Z3 constraint solver. Experiments
with several embedded software and a real-life robot controller suggest that we
can discover performance bugs in a reasonable time.

1 Introduction

It is notoriously difficult to understand and discover performance bugs in software.
Whereas performance bugs may appear in any application, these bugs are critical for
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certain class of software, such as embedded and real-time software. Embedded and real-
time applications are, in general, constrained via several temporal requirements. For
hard real-time applications, violation of such temporal constraints may lead to catas-
trophic effects, often costing human lives. Apart from hard real-time applications, the
existence of performance bugs may substantially impact the quality of soft real-time
applications (e.g. media players) as well as web applications.

As the computing world is moving towards the multi-core era, it has become a crit-
ical problem to develop correct and efficient software on multi-core platforms. On the
one hand, an application can utilize the potential of multi-core platforms by perform-
ing computations in parallel. On the other hand, parallel execution may dramatically
increase the amount of non-determinism compared to a sequential execution. This hap-
pens due to the presence of an exponential number of interleaved execution patterns.
Therefore, to validate the correctness and efficiency of applications on multi-core plat-
forms, it is crucial that the validation methodologies consider different interleaving pat-
terns. In this paper, broadly, we concentrate on the efficiency of applications which run
on multi-core platforms.

In multi-threaded execution, software functionality might be disrupted due to the
non-deterministic order in accessing shared data [13]. Similarly, the performance of
multi-core systems may highly vary due to the non-deterministic order in accessing
shared resources, such as shared caches. Caches are managed at runtime and they store
copies of memory blocks from the main memory. In current generation computing plat-
forms, caches are several magnitudes faster than accessing the main memory. As a re-
sult, cache memory is a crucial component to bridge the performance gap between the
processor and main memory, and to improve the overall performance of applications.
However, since caches are managed at runtime, the order of memory-access patterns
play a crucial role in deciding the content of caches. For instance, consider a shared
cache which can hold only one memory block. If memory accesses m1 and m2 are in-
terleaved in parallel, the ordering (m1 ·m2)∗ will always lead to cache misses. This is
because m1 and m2 will always replace each other from the cache. On the contrary, for
the ordering (m∗1 ·m∗2), only the first accesses of m1 and m2 will suffer cache misses. In
summary, depending on the order of memory accesses, there might be a high variation
on cache performance, which dramatically impacts the overall performance of software.

In this paper, we propose a novel approach to discover interleaving patterns that
violate a given temporal constraint. For a given program input, our framework auto-
matically discovers the order of memory accesses that highlights a performance bug.
These bugs happen due to the sharing of caches in multi-core systems and they may
lead to serious performance issues at runtime. A typical usage of our framework is the
reproduction of performance bugs on multi-core systems and subsequently, improve the
overall performance via classic cache management techniques, such as cache locking
[22]. We leverage on the recent advances in constraint solving and satisfiability modulo
theory (SMT) to systematically explore memory-access patterns. We propose a baseline
framework which does not generate any false alarm. Moreover, if our baseline frame-
work terminates without a solution, then we can guarantee the absence of performance-
bugs (i.e. violation of the temporal constraint), for the given input. We also propose an
approximation that systematically partitions the set of constraints and solve each par-
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tition in parallel. Such a strategy dramatically improves the solver performance. Our
approximation guarantees soundness, meaning that the absence of a solution highlights
the absence of performance bugs. However, the price of approximation might be paid
via pessimism (i.e. false alarms). Our evaluation reveals that the magnitude of such
pessimism is reasonable.

The generation of a performance-stressing interleaving pattern involves many tech-
nical challenges. Unlike the functionality of an application, its performance is not di-
rectly annotated in the code. Moreover, it is infeasible to execute an application for
all possible interleaving patterns, due to an exponential number of possibilities. To re-
solve such challenges, we propose a compositional approach to discover performance
bugs. Our framework broadly contains two stages. In the first stage, we monitor the
performance of each core in isolation. Therefore, in this stage, we ignore interferences
in the shared cache from other cores. The output of the first stage is a performance-
summary for each core, where the timing to access the shared cache is replaced by a
symbolic variable. In the second stage, we formulate constraints that relate the order of
memory accesses with the delay to access the shared-cache. In particular, we formulate
constraints that symbolically encode necessary and sufficient conditions for a memory
block to be evicted from the shared-cache. As a result, using these constraints, we could
determine whether a given memory block is available in the shared-cache, when it is
being accessed. In other words, we can use such constraints to bound the delay to access
the shared-cache and thereby, constraining the value of symbolic variables, which were
introduced in the first stage of our framework. Finally, the temporal constraint is also
provided as a quantifier-free formula. All the constraints, together with the temporal
constraint, is given to an SMT solver. If the solver finds a solution, the resulting solu-
tion highlights an interleaving pattern that violates the temporal constraint. Since SMT
technology is continuously evolving, we believe that such a compositional approach
will be appealing to discover performance bugs in multi-core systems.

To tackle the complexity of our systems, we also propose an approximate solution
that significantly improves the performance of our proposed framework. For shared
caches, we observed that the set of all constraints can be partitioned systematically to
solve in parallel. The general intuition is to consider partitions of memory accesses
which can contend in the shared-cache and solve the constraints generated for each
partition independently. By increasing the size of each partition, the designer can reduce
the number of false positives at the cost of debugging time. Therefore, our framework
gives designer the flexibility to fine tune the precision, with respect to debugging time.

Contribution In summary, we propose a performance debugging framework that ex-
poses performance issues due to shared caches. We leverage on single-core performance
profiling and symbolic-constraint solving, in order to discover the interleaving pattern
that violates a given temporal constraint. Our baseline framework does not generate any
false positive and it can also be used to prove the absence of performance bugs for a
given input. Moreover, for time-critical code fragments, our baseline framework can be
employed to derive the worst-case interleaving pattern (in terms of shared-cache perfor-
mance), for a given input. To tackle the complexity of our constraint-based framework,
we have also proposed an approximation that dramatically increases the solver perfor-
mance. To show the generality of our approach, we have instantiated our framework
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for two different caches (i) caches with least-recently-used (LRU) replacement policy
and (ii) caches with first-in-first-out (FIFO) policy. We have implemented our entire
framework on top of simplescalar [6] – an open-source, cycle-accurate, proces-
sor simulator and Z3 [5] – an open source, SMT solver. Our experiments with several
embedded software reveals the effectiveness of our approach. Last but not the least,
we have evaluated our framework with a real-life robot controller (available in [3]). On
average, our baseline framework was able to check a variety of temporal constraints
for the controller within 3 minutes and our approximation took only 20 seconds on
average to check the same set of constraints. This makes the idea of constraint-based
formulation in performance debugging quite appealing for research in future.

2 Overview

In this Section, we shall first give a brief background on caches. Subsequently, we shall
use a simple example to illustrate the challenges involved in accurately computing the
shared-cache access delay on multi-core systems.

Background on caches Caches are employed between the CPU and the main memory
(DRAM) to bridge the performance gap between the CPU and the DRAM. A cache can
be described as a three tuple 〈A,S,L〉, whereA is the associativity of the cache, S is the
number of cache sets and L is the line size (in bytes). Each cache set can hold A cache
lines, leading to a total cache size of (A·S ·L) bytes. WhenA = 1, the respective caches
are called to be directly mapped. Data is fetched into caches at the granularity of line
size (L). Therefore, for an arbitrary memory address x, L contiguous bytes are fetched
into the cache starting from address

⌊
x
L

⌋
and we say that x belongs to the memory block⌊

x
L

⌋
. The number of cache sets (S) decides the location where a particular memory

block would be placed in the cache. For instance, a memory block, starting at address
M , is always mapped to the cache set M mod S. Since each cache set can hold only
A cache lines, a cache line needs to be replaced when the number of memory blocks
mapping to a cache set exceeds A. In order to accomplish this, a replacement policy is
employed when A ≥ 2. In this paper, we instantiate our framework for two widely used
replacement policies – LRU and FIFO. In LRU policy, the memory block, that was not
accessed for the longest period of time, is replaced from the cache to make room for
other memory blocks. In FIFO policy, the memory block, which is residing in the cache
for the longest period of time, is replaced to make room for other blocks. In general, the
performance of a cache may greatly depend on the underlying replacement policy.

Terminologies We use the following terminologies on caches throughout the paper.

1. memory block: For an arbitrary memory reference to address x, we say that it be-
longs to memory block

⌊
x
L

⌋
(L is the line size of cache, in bytes), in order to dis-

tinguish different cache lines.
2. cache hit/miss: For an arbitrary memory reference, we say that it is a cache hit

(miss) if the referenced memory block is found (not found) in the cache.
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3. cache conflict: Two memory blocks M1 and M2 conflict in the cache if they map to
the same cache set. In other words, M1 is conflicting to M2 (and vice versa). These
conflicting memory blocks might be accessed within the same core (intra-core) or
across different cores (inter-core).

4. cache-set state: Ordered A-tuple capturing the content of a cache set. For instance,
〈m1,m2〉 captures such a tuple for caches with associativity 2. The relative position
of a memory block in the tuple decides the number of unique cache conflicts re-
quired to evict the same from the cache. For instance, in 〈m1,m2〉, m1 requires two
unique cache conflicts to be evicted from the cache, whereas m2 requires only one.
The generation of cache conflicts critically depends on the replacement policy and
the order of memory accesses.

Motivation and challenges

Figure 1 captures an example where two programs are executing in parallel on different
processor cores and sharing a cache. In general, multi-core systems employ several lev-
els of private caches and a last-level shared cache (e.g. ARM MPCore). For the sake of
simplicity, let us assume that all the instructions in both Program x and Program y
access the same shared-cache set. In Figure 1(a), the memory block accessed by each
instruction is shown within the brackets. In the following discussion, we shall capture
the location i of Program x via xi and the same of Program y via yi.

Program x            
1: load   [m1]            
2: store  [m2] 
3: load   [m1]          
4: store  [m1]       
5: store  [m2] 

Program y            
1: store [m1’]            
2: load  [m2’] 
3: load  [m1’]          
4: load  [m2’]       

Program x            
1: load   [m1]            
2: store  [m2] 
3: load   [m1]          
4: store  [m1]       
5: store  [m2] 

Program y            
1: store [m1’]            
2: load  [m2’] 
3: load  [m1’]          
4: load  [m2’]       

m1 m2 m1’m1 m2

m2’ m1 m1’m2’ m1

m2’ m1 m2m2’ m1

m1’

m1’

Program x            
1: load   [m1]            
2: store  [m2] 
3: load   [m1]          
4: store  [m1]       
5: store  [m2] 

Program y            
1: store [m1’]            
2: load  [m2’] 
3: load  [m1’]          
4: load  [m2’]       

m1’ m1 m2m1’ m1

m2 m2’ m1m2 m2’

m1’ m2’ m2m1’ m2’

m1

m1

m1’ m1 m2m1’ m1

m1 m2’ m1m1 m2’

m1’ m2’ m2m1’ m2’

m2

m1

(a) Two programs running in parallel (b) Interleaving pattern leading  
to 100% cache misses

 (c) Transition of cache contents leading  
to 100% cache misses

(e) Transition of cache content leading   
to cache miss at location 4 of Program x  

(using FIFO policy)

(f) Transition of cache contents leading  
to cache hit at location 4 of Program x  

(using LRU policy)

(d) Interleaving pattern that does not  
generate 100% cache misses and behaves  

differently for FIFO and LRU policy

Fig. 1. An example showing the impact of interleaving pattern on shared-cache performance. The
direction of an arrow captures the happens-before relation. Cache misses are highlighted in bold.

Let us assume a cache with associativity (A) two and employing FIFO replacement
policy. The delay to access the shared-cache might highly vary due to an exponential
number of possible interleaving patterns. For instance, let us first assume that we want
to check whether all instructions in both programs can face cache misses. Figure 1(b)
captures an interleaving pattern which leads to 100% cache misses in both programs.
The progression of the cache content for this interleaving pattern is captured via Fig-
ure 1(c). It is worthwhile to note that many interleaving patterns will fail to generate
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100% cache misses in both programs. Figure 1(d) captures one such interleaving pat-
tern. As a result, if the set of memory accesses (cf. Figure 1(a)) appears within a loop,
the memory-access delay might change dramatically depending on the interleaving pat-
tern. This is due to the huge performance gap between processor and memory. The
respective cache contents for the interleaving pattern in Figure 1(d) are shown via Fig-
ure 1(e). In general, it is infeasible to perform an exhaustive search over the set of all
possible interleaving patterns, due to an exponential number of possibilities. As a result,
a systematic method is required to check performance-related constraints, in the context
of multi-core systems.

Let us now assume that we want to check whether location x4 can face a cache
miss. Such a behaviour can also take place only for a few interleaving patterns. Fig-
ure 1(d) captures an interleaving pattern which lead to a cache miss at location x4 (cf.
Figure 1(e) for the transition of cache contents). Unfortunately, if we replay the same
interleaving pattern for LRU replacement policy, it will not lead to a cache miss at loca-
tion x4. This behaviour is captured via Figure 1(f), which demonstrates the modification
of cache contents in the presence of LRU policy. This shows the influence of the cache
replacement policy to check or invalidate temporal constraints.

To summarize, due to the presence of shared caches in multi-core systems, it is
challenging to check the validity of temporal constraints or reproduce any violation
of temporal constraints in a production run. This phenomenon occurs due to the non-
determinism in the order of interleaved memory-accesses, which, in turn leads to non-
determinism in cache contention and variability in memory-access delay. In the follow-
ing, we shall give an outline of our performance debugging framework.

Program 1

Program 2

Program n

Core 1

Core 2

Core n

.!

.
.!
.

Input

Input

Input

Log shared-cache accesses  
and shared-cache-set states 

Log shared-cache accesses 
and shared-cache-set states

Log shared-cache accesses  
and shared-cache-set states

.!

.
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Fig. 2. Performance debugging framework for multi-core systems

Overall framework Figure 2 outlines our overall strategy in order to check the validity
or violation of temporal constraints on multi-core systems. For a given input to each pro-
gram running in parallel, our framework is used to check the temporal constraints. We
monitor the execution on each core in isolation, ignoring any interference from other
cores. As a result, this monitoring phase can be carried out in parallel for each core.
While monitoring, we record accesses to the shared cache by each core. This can be
performed either via instrumentation on real hardware or using a simulator which mod-
els the underlying memory hierarchy. At the end of the monitoring phase, we obtain a
sequence of shared-cache accesses 〈i1, i2, . . . , iVi−1, iVi〉 for each core i, where Vi is the
total number of shared-cache accesses by core i. We also collect the shared-cache-set
states at these access points. Using the information obtained from the monitoring phase,
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we build a constraint system. Intuitively, this constraint system relates the order of mem-
ory accesses with the delay to access the shared cache. The size of our constraint system
is polynomial, with respect to the number of accesses to the shared cache. Finally, the
temporal constraint can be provided to the constraint system via quantifier-free predi-
cates. The entire constraint system, along with the temporal constraints, is provided to
an SMT solver. If the constraint system is satisfiable, then the solution returned by the
SMT solver captures an interleaving pattern that violates certain temporal constraints.
This solution can further be used for debugging performance on multi-core systems.

System model We assume a sequentially-consistent, multi-core system where each core
may have several levels of private caches and only the last-level cache is shared across
cores. Therefore, a shared-cache miss will lead to an access to the slow DRAM. Such
a design of memory-hierarchy is typical in embedded multi-core processors [1]. In this
paper, we do not address the problem of cache coherency and any cache misses resulting
from the same. Such cache misses might appear due to the invalidation of cache lines
that hold outdated data. Besides, additional cache misses might appear due to false
sharing [2]. In summary, we first assume that programs, running on different cores,
have disjoint memory spaces. We argue that, even in the absence of cache coherency,
debugging shared-cache performance is sufficiently complex. In Section 4, we shall
discuss the required modifications in our framework in the presence of data sharing. In
the following, we first present our baseline framework. Subsequently, we shall discuss
an approximation scheme to reduce the debugging time.

3 Methodologies

In this section, we shall introduce the formal foundation of our framework. Recall that
the outcome of our framework is to compute a memory-access ordering, leading to a
specific performance problem (specified by a quantifier-free predicate). This ordering
is captured among all accesses to the shared cache.

Let us assume that we have a total of N cores, each of which might exhibit a dif-
ferent sequence of shared-cache accesses. We use the notation ij to capture the j-th
shared-cache access by i-th core and Vi to capture the total number of shared-cache
accesses by core i. Besides, we shall use the following notations to formulate our per-
formance debugging framework.

– σji : The memory block accessed by the shared-cache access ij .
– π(m) : Cache set where memory block m is mapped.
– ζji : Shared-cache-set state for cache set π(σji ), immediately before the access ij .
– Cji : The set of memory blocks, other than σji , mapping to the same cache set as σji in

the shared cache. Therefore, for any m′ ∈ Cji , we have m′ 6= σji and π(m′) = π(σji ).
– Oji : The position of the shared-cache access ij in the ordering among all accesses

to the shared cache.
– δji : The delay suffered by the shared-cache access ij .

For instance, in Figure 1(b), σ1
x = m1, σ1

y = m1′, ζ1
y = 〈m2,m1〉 and the interleaving

pattern is captured as follows: O1
x < O2

x < O1
y < O2

y < O3
x < O3

y < O4
y < O4

x < O5
x. The

outcome of our framework is such an interleaving pattern.
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Profiling each core in isolation As outlined in the preceding section, our framework
initially records the performance of each core in isolation. The primary purpose of this
recording phase is to accurately identify accesses to the shared cache, for each core.
Therefore, while profiling each core in isolation, ζji contains memory blocks accessed
only within core i and ignores all memory blocks accessed within core ī 6= i.

Let us assume ageji denotes the relative position of σji within ζji , while profiling
each core in isolation. If σji /∈ ζ

j
i (i.e. ij suffers a shared-cache miss), we assign ageji to

A + 1, where A is the associativity of the shared-cache. Subsequently, for each core i,
we encode a performance-summary αi as a sequence of pairs. Each such pair captures
a shared-cache access ij , along with ageji as follows:

αi ≡ 〈(i1, age1
i ), (i

2, age2
i ), . . . , (i

Vi−1, ageVi−1
i ), (iVi , ageVii )〉 (1)

For any shared-cache access ij , it is a shared-cache miss if and only if σji /∈ ζji ,
leading to the value of ageji set to A+ 1. Such a cache miss can happen because of the
following reasons:

1. σji was accessed for the first time
2. σji was evicted from the shared-cache by some other memory block

Recall that programs running on different cores have disjoint memory spaces. As a
result, while profiling each core in isolation, we can accurately identify shared-cache
misses when σji was accessed for the first time. This is because, σji was not accessed
by any other core except core i. In subsequent sections, we shall describe our con-
straint system, which formulates necessary and sufficient conditions for evicting mem-
ory blocks from the shared-cache, leading to shared-cache misses.

Program order constraints These constraints are generated to capture the program
order on each core. Note that 〈i1, i2, . . . , iVi−1, iVi〉 captures the sequence of shared-
cache accesses by core i. Therefore, the following constraints are generated to capture
the program order.

Θorder ≡
∧

i∈[1,N ]

∧
j∈[2,Vi]

(
Oji > O

j−1
i

)
(2)

Program-order constraints are generated irrespective of the cache replacement policy. In
the following, we now instantiate the constraint formulation for LRU and FIFO policies.

3.1 Constraint system for LRU caches

A shared-cache access ij is a cache hit if and only if ζji contains σji . Otherwise, ij suffers
a shared-cache miss. Therefore, to accurately determine the shared-cache performance,
it is crucial to track all feasible states of ζji . We accomplish this by relating the order
of memory accesses with the changes in cache-set states. In order to understand the
relationship between the memory-access order and cache-set states, we first define the
notion of cache-conflict generation between two shared-cache accesses.
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Definition 1 (Cache Conflict Generation) Consider a shared-cache access īj̄ , which
requests memory block m̄ (i.e. σj̄

ī
= m̄). A shared-cache access īj̄ generates (cache)

conflict to ij , only if accessing σj̄
ī

can affect the relative position of σji within ζji . For
instance, in Figure 1(d), accesses to m1′ and m2′ do not generate cache conflict to x3,
but an access to m2 does (at x2).

We introduce a variable Ψ ji (m̄) to capture whether any access to memory block m̄
generates conflict to the shared-cache access ij . As stated in Definition 1, the memory
block m̄ might be accessed more than once and therefore, the formulation of Ψ ji (m̄)

must consider all possible places where m̄ was accessed. Consider one such place īj̄ ,
where m̄ was accessed. Therefore, σj̄

ī
= m̄. Figure 3 illustrates different scenarios in

LRU policy, with respect to the generation of cache conflicts.

Shared−cache set state
ij−1

ζ ji σj−1
i

ij

īj̄

Shared−cache set state

ζ ji

ij

īj̄

pq [σq
p = σj

i ]

σ j̄

ī
σj
i = σq

p

Shared−cache set state

īj̄

[σq
p = σj

i ] pq

ζ ji σ j̄

ī

ij

σj
i = σq

p

(a) (b) (c)

Fig. 3. The direction of arrow captures the total order between accesses to the shared cache.
The left-most position in ζji captures the most recently used memory block. (a) īj̄ cannot affect
shared-cache set state ζji and therefore, it cannot generate cache conflict to ij , if īj̄ happens after
ij , (b) īj̄ can affect ζji only if īj̄ happens before ij , (c) shared-cache access pq accesses the same
memory block as that of ij (i.e. σqp = σji ) and therefore, access īj̄ cannot affect the relative
position of σji within ζji .

In particular, Figures 3(a)-(b) capture the happens-before relationship between ac-
cesses īj̄ and ij . It is impossible for īj̄ to affect the cache-set state ζji , if ij happens
before īj̄ . Moreover, if the memory block σji is accessed after īj̄ and before ij , then such
an access will hide the cache conflict between īj̄ and ij . Figure 3(c) captures one such
situation, where shared-cache access pq accesses the memory block σji and prevents īj̄

to affect the relative position of σji within cache-set state ζji .
In the following, we describe the formulation of constraints for an arbitrary shared-

cache access ij . The primary purpose of these constraints is to compute the delay δji .
Considering the intuition provided in Figure 3, we can state that a shared-cache access
īj̄ generates conflict to the shared-cache access ij , only if the following conditions hold:

– ψlrucft

(
īj̄ , ij

)
: Shared-cache access īj̄ happens before the shared-cache access ij .

Therefore, Oj̄
ī
< Oji . This is illustrated via Figures 3(a)-(b).

– ψlruref

(
īj̄ , ij

)
: There does not exist any shared-cache access pq, such that pq ac-

cesses memory block σji from the shared-cache, pq happens before ij and īj̄ hap-
pens before pq. Therefore, for any shared-cache access pq, where σqp = σji , condi-
tions Oqp < Oji and Oj̄

ī
< Oqp cannot be satisfiable together. Otherwise, note that pq

will hide the cache conflict between īj̄ and ij , as illustrated via Figure 3(c).
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ψlrucft

(
īj̄ , ij

)
and ψlruref

(
īj̄ , ij

)
can be formalized via the following constraints:

ψlrucft

(
īj̄ , ij

)
≡ Oj̄

ī
< Oji (3)

ψlruref

(
īj̄ , ij

)
≡

∧
p,q: σ

q
p=σ

j
i

¬
(
Oj̄
ī
< Oqp ∧ Oqp < Oji

)
(4)

We combine Constraint (3) and Constraint (4) to formulate the generation of shared-
cache conflict. Recall that Cji captures the set of memory blocks that map to the same
shared-cache set as σji . Therefore, Constraints (3)-(4) need to be generated for each
memory block in Cji . Formally, for each shared-cache access ij , we generate the follow-
ing constraints to capture cache conflicts generated across cores.

Θlru1 (i, j) ≡
∧

ī6=i:σj̄
ī
∈Cji

((
ψlrucft

(
īj̄ , ij

)
∧ ψlruref

(
īj̄ , ij

))
⇒
(
Ψ ji

(
σj̄
ī

)
= 1
))

(5)

The absence of inter-core cache conflict is captured via the negation of Constraint (5).
In particular, for any memory block m̄ ∈ Cji , we need to consider the set of locations īj̄

where m̄ is accessed (i.e. σj̄
ī

= m̄). If none of these locations satisfy either Constraint (3)
or Constraint (4), we can conclude that accesses to memory block m̄ do not generate
any cache conflict at location ij . This behaviour can be captured via the following con-
straints:

Θlru0 (i, j) ≡
∧
m̄∈Cji

 ∧
ī 6=i:σj̄

ī
=m̄

(
¬ψlrucft

(
īj̄ , ij

)
∨ ¬ψlruref

(
īj̄ , ij

))
⇒
(
Ψ ji (m̄) = 0

) (6)

Finally, we need to link Constraints (5)-(6) to the absolute latency suffered by shared-
cache access ij (i.e. δji ). Let us assume HIT and MISS capture the shared-cache hit la-
tency and miss penalty, respectively. To compute the latency, we need to check whether
the set of cache conflicts generated at ij could evict the memory block σji . Therefore,
we generate the following constraints to formulate the delay suffered at location ij .

Θlrumiss(i, j) ≡

 ∑
ī6=i: σj̄

ī
∈Cji

Ψ ji (σj̄
ī
) ≥ A− ageji + 1

⇒ (δji = MISS) (7)

Θlruhit (i, j) ≡

 ∑
ī 6=i: σj̄

ī
∈Cji

Ψ ji (σj̄
ī
) ≤ A− ageji

⇒ (δji = HIT ) (8)

ageji denotes the relative position of σji within ζji and ageji=A+1, if σji /∈ ζ
j
i . The value

ageji was collected while profiling each core in isolation (cf. Equation (1)). There-
fore, ageji already captures cache conflicts generated within core i and the quantity(
A− ageji + 1

)
captures the minimum number of unique, inter-core cache conflicts (as

formulated via Constraint (5)) to evict σji from the shared cache.
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3.2 Constraint system for FIFO caches

Unlike LRU policy, cache-set state remains unchanged for all cache hits in FIFO policy
(cf. Figure 1(e)). As a result, the necessary conditions to generate cache conflicts (cf.
Constraints (3)-(4)) need to be modified for FIFO policy.

Shared−cache set state
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i ] pq
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(a) (b) (c)

Fig. 4. The direction of arrow captures the total order between accesses to the shared cache. The
left-most position in ζji captures the most recent memory block inserted into ζji . (a) īj̄ cannot
affect shared-cache set state ζji as īj̄ is a cache hit. Therefore, īj̄ cannot generate cache conflict
to ij , (b) īj̄ can affect ζji only if īj̄ happens before ij and it is a cache miss, (c) shared-cache
access pq accesses the same memory block as that of ij (i.e. σqp = σji ), however, pq is a cache
hit. Therefore, pq cannot hide the cache conflict generated between īj̄ and ij .

To illustrate the difference between LRU and FIFO policy, let us consider the sce-
narios in Figure 4. For instance, in Figure 4(a), shared-cache access īj̄ happens before
the access ij . However, īj̄ cannot affect the relative position of σji within ζji and there-
fore, īj̄ cannot generate cache conflict to ij (cf. Definition 1). It is worthwhile to note
that, īj̄ would have generated conflict to ij , in the presence of LRU policy. Figure 4(b)
captures a scenario, where īj̄ was a cache miss, leading to the generation of cache con-
flict to ij . Recall that, for LRU policy, if the memory block σji was accessed between
īj̄ and ij , then īj̄ could not generate cache conflict to ij (cf. Constraint (4)). However in
FIFO policy, as shown in Figure 4(c), even though access pq references σji and it occurs
between īj̄ and ij , pq cannot hide the cache conflict between īj̄ and ij . This is because
pq was a cache hit and therefore, it does not affect the relative position of σji within ζji .

In summary, a shared-cache access must be a cache miss if it affects the cache-set
state ζji . In order to realize this intuition, we formulate the following constraints, which
capture the necessary conditions for īj̄ generating cache conflict to ij .

ψfifocft

(
īj̄ , ij

)
≡
(
Oj̄
ī
< Oji

)
∧
(
δj̄
ī

= MISS
)

(9)

ψfiforef

(
īj̄ , ij

)
≡

∧
p,q: σ

q
p=σ

j
i

¬
((
Oj̄
ī
< Oqp

)
∧
(
Oqp < Oji

)
∧
(
δqp = MISS

))
(10)

Constraint (9) ensures that īj̄ incurs a cache miss, in order to generate cache conflict to
ij (cf. Figures 4(a)-(b)). Similarly, Constraint (10) ensures that access pq needs to be a
cache miss to hide the cache conflict between īj̄ and ij (cf. Figure 4(c)).

The outcome of Constraints (9)-(10) may depend on the interleaving pattern, even
within a single core (i.e. ī = i). This is because, values of δj̄

ī
and δqp may depend on the
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interleaving pattern. As a result, the generation of cache conflicts, even within a core,
may be affected with FIFO policy. Hence, unlike LRU policy, we need to formulate
cache conflict both within a core and across cores. This is accomplished by modifying
Constraints (5)-(6), so that the resulting constraints also consider cache conflicts within
cores. In particular, we remove the condition ī 6= i from Constraints (5)-(6) as follows.

Θfifo1 (i, j) ≡
∧

ī,j̄:σ
j̄
ī
∈Cji

((
ψfifocft

(
īj̄ , ij

)
∧ ψfiforef

(
īj̄ , ij

))
⇒
(
Ψ ji

(
σj̄
ī

)
= 1
))

(11)

Θfifo0 (i, j) ≡
∧
m̄∈Cji

 ∧
ī,j̄:σ

j̄
ī
=m̄

(
¬ψfifocft

(
īj̄ , ij

)
∨ ¬ψfiforef

(
īj̄ , ij

))
⇒
(
Ψ ji (m̄) = 0

)
(12)

Finally, we link Constraints (11)-(12) to compute the memory-access latency. Intu-
itively, we check whether the total amount of cache conflict can evict the memory block
accessed by ij . This can be formalized via the following constraints.

Θfifomiss(i, j) ≡


∑
m̄∈Cji

Ψ ji (m̄) ≥ A

 ∨ (ageji = A+ 1
)⇒ (δji = MISS) (13)

Θfifohit (i, j) ≡


∑
m̄∈Cji

Ψ ji (m̄) < A

 ∧ (ageji 6= A+ 1
)⇒ (δji = HIT ) (14)

A is the associativity of the cache. Recall that ageji=A+1, if σji /∈ ζ
j
i and ageji was mea-

sured while investigating each core in isolation (cf. Equation 1). Therefore, the condi-
tion ageji=A+1 guarantees to include the first-ever cache miss of σji . Once σji enters the
cache, it takes at leastA unique cache-conflicts to evict it from the cache.

∑
m̄∈Cji

Ψ ji (m̄)

accounts all unique cache-conflicts faced by σji , since it enters the cache and till ij .
Therefore, Constraint (13) precisely captures all possibilities of a cache miss at ij . The
violation of Constraint (13) will result in a cache hit at ij , as shown in Constraint (14).

Providing temporal constraints For embedded software, temporal constraints can be
provided in the form of an assertion. Therefore, our framework will search for an order-
ing on symbolic variablesOji that violates such assertions. In particular, we consider as-
sertions that check the execution time against a threshold τ . In our framework, the non-
determinism in timing behaviour appears due to the accesses to shared caches. There-
fore, in our evaluation, we search for a solution that satisfy the following constraint:(∑

i,j δ
j
i ≥ τ

)
. Recall that δji symbolically captures the delay suffered by shared-cache

access ij . It is worthwhile to note that we can also check the timing behaviour of a code
fragment, instead of checking the same for the entire system. In such cases, we consider
only a subset of δji variables relating to the code fragment.
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Putting it all together Our formulated constraints, along with the temporal constraint,
is provided to an off-the-shelf SMT solver. As a result, any ongoing and future improve-
ments in the solver technology will directly boost the efficiency of our approach. The
SMT solver searches for a satisfying solution of the following constraints:

Φ ≡ Θorder ∧
∧
i,j

(Θx1 (i, j) ∧Θx0 (i, j) ∧Θxmiss(i, j) ∧Θxhit(i, j)) ∧

(∑
i,j

δji ≥ τ

)
(15)

where x ∈ {lru, fifo}, depending on the cache replacement policy. The solution of the
solver captures concrete values of symbolic variables Oji that satisfy Φ. Such concrete
values can be used to derive the total order among all accesses to the shared-cache.

Complexity of constraints The complexity of our constraints Φ (cf. Constraint (15))
is dominated by the number of constraints to formulate cache conflicts. For instance,
in LRU policy, Constraints (5)-(6) dominate the total number of constraints. Let us as-
sume that the total number of shared-cache accesses across all cores is K. Therefore,
the size of Constraints (2) has a complexity of O(K). Similarly, the total size of Con-
straints (7)-(8), for LRU policy (respectively, the total size of Constraints (13)-(14) for
FIFO policy) has a size of O(K). Finally, during the formulation of cache conflict, each
shared-cache access can be compared with all conflicting shared-cache accesses. There-
fore, Θlru1 (i, j), Θlru0 (i, j), Θfifo1 (i, j) and Θfifo0 (i, j) have a worst-case size-complexity
O(K2). Since there exists a total of K shared-cache accesses, the total size of Con-
straints (5)-(6) has a complexity of O(K3). Putting everything together, our constraint
system has a worst-case size-complexity O(K3). However, our evaluation reveals that
the size of our constraint system is substantially lower than the worst-case complexity.

3.3 Approximate solution

In the preceding, we observed that the number of constraints is polynomial with respect
to the number of accesses to the shared cache. However, for long traces, the solver may
impose a bottleneck to handle a large number of constraints. To address this, we propose
an approximation, which potentially improves the scalability by several magnitudes.
The general intuition of our approximation is based on the design principle of caches.
In particular, we leverage the fact that two different cache sets never interfere with each
other, in terms of cache conflict. Therefore, we model the constraints for each cache set
separately and solve them in parallel. In the following, we shall formalize the concept.

Finding a slice of constraints The key idea for the approximation is to find a slice
of constraints that could be solved independently. Recall that the symbolic variable δji
captures the delay suffered by shared-cache access ij . It is worthwhile to note that the
memory block accessed at ij (i.e. σji ) can be evicted from the shared-cache only by
memory blocks conflicting to σji . A memory block m̄ conflicts to σji in the cache if and
only if m̄ and σji map to the same cache set. Therefore, we first group shared-cache
accesses with respect to different cache sets and generate the respective constraints. For
instance, consider that we are generating constraints with respect to cache set s. We
shall use π(m) to capture the cache set in which memory block m is mapped.
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We slice out the program-order constraints by considering only the memory blocks
which map to cache set s. Therefore, the set of program-order constraints, with respect
to cache set s, can be defined as follows.

Γorder(s) ≡
∧

i∈[1,N ]

 ∧
j,k∈[1,Vi]: j<k∧(π(σ

j
i )=π(σk

i )=s)∧(∀m∈[j+1,k): π(σ
j
i )6=π(σm

i ))

Oki > Oji


(16)

Let us now consider LRU cache replacement policy. The set of constraints, with respect
to cache set s, considers constraints that only influence the memory blocks mapped to
cache set s. Therefore, for cache set s, we extract the constraints formulated in Equa-
tions (5)-(8) as follows.

Γ lru1 (s) ≡
∧

i,j:π(σ
j
i )=s

Θlru1 (i, j); Γ lru0 (s) ≡
∧

i,j:π(σ
j
i )=s

Θlru0 (i, j) (17)

Γ lrumiss(s) ≡
∧

i,j:π(σ
j
i )=s

Θlrumiss(i, j); Γ lruhit (s) ≡
∧

i,j:π(σ
j
i )=s

Θlruhit (i, j) (18)

Finally. we gather all constraints with respect to cache set s. Our goal is to maximize
the delay faced by accessing memory blocks mapped to s. This is performed via the
following constraints and objective function.

Γ (s) ≡ Γorder(s) ∧ Γ lru1 (s) ∧ Γ lru0 (s) ∧ Γ lrumiss(s) ∧ Γ lruhit (s) (19)

∆(s) = maximize
∑

i,j: π(σ
j
i )=s

δji (20)

Note that Γ (s) includes all constraints that could influence ∆(s). We can use recent de-
velopment in SMT solving [21] to maximize the objective function captured via Equa-
tion (20). It is also worthwhile to mention that the preceding process can be carried out
in an exactly same fashion for FIFO policy. As a result, our approximation strategy is
generic, with respect to the replacement policy employed in a cache.

For each cache set s, we formulate Γ (s) and obtain the value of ∆(s) using [21]. If
s1, s2, . . . , sq are all different sets in the shared cache,

∑
r∈[1,q] ∆(sr) over-approximates

the total delay in accessing the shared cache. More precisely, we state the crucial prop-
erty of our approximation scheme as follows (see Appendix for the proof).

Property 2 Let us assume {s1, s2, . . . , sq} are different sets in the shared cache. For a
given temporal constraint

∑
i,j δ

j
i < τ , if our baseline constraint system Φ (cf. Con-

straint (15)) is satisfiable, then
∑
r∈[1,q] ∆(sr) ≥ τ . In other words, our approximation

scheme will never miss the violation of any temporal constraint.

However, it is worthwhile to mention that our approximation scheme may generate false
positives. In particular,

∑
r∈[1,q] ∆(sr) might over-approximate the maximum value of∑

i,j δ
j
i . This is due to the reason that interleaving patterns, which lead to the maximum

delay for individual cache sets, may not be feasible together. In our evaluation, we
empirically evaluate the amount of pessimism in our approximation scheme.
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4 Extension

Applications with shared variables Recall that we monitor the performance of each
core in isolation and replace the delay to access the shared cache via a symbolic vari-
able. In particular, our framework handles interferences in the shared resources, but,
not in the shared variables. As a result, we do not catch the scenario when the program
control-flow changes due to updates to shared variables. However, many embedded ap-
plications are designed by a number of independent components and the communication
occurs in terms of reading sensor inputs or writing to output ports. In our evaluation,
we show a real-life robot controller which operates via two independent tasks – balance
and navigation. Moreover, shared memory-space across cores often bypass caches, to
avoid power consumption due to coherence traffic [18]. If accessing the shared memory-
space bypasses cache, our framework can be easily extended for general applications
with shared variables. In order to accomplish this, we need to generate additional con-
straints, which encode the program control-flow observed during a failure run (i.e. an
execution scenario violating certain temporal constraints). This can be achieved in an
exactly same fashion as shown in [19].

It is slightly more complex when accessing the shared memory-space goes through
caches. In particular, we need to add constraints that capture cache misses due to data
coherency and false sharing [2]. This can be accomplished by correlating writes and
reads to the same memory block. Besides, we need to distinguish the first-ever shared-
cache miss for a memory block. Without data sharing, such cache misses can be de-
tected during the inspection of each core in isolation. However, with data sharing, we
need to detect first-ever shared-cache misses using the following constraints, for any
replacement policy:

∧
i,j

 ∧
p,q: σ

q
p=σ

j
i

(
Oqp > Oji

)
⇒
(
δji = MISS

) (21)

Constraint (21) encodes the scenario of ij being the first shared-cache access to re-
quest memory block σji . This, in turn, leads to a shared-cache miss. We are currently
extending MESS to handle data sharing and cache coherency.

Performance debugging for a class of inputs With minor changes, our framework can
be extended for performance debugging on a class of inputs. The key to such extension
is to collect path conditions [16], while monitoring the performance of each core in
isolation. For each core, such a path condition captures the set of all inputs which
lead to the respective execution scenario. However, depending on the value of input x,
the statement a[x] might access different memory blocks, for the same path condition.
Therefore, we need to generate constraints for each such memory block, satisfying the
respective path constraint. Let us assume that array a might access memory block m1 if
0 ≤ x ≤ 2 and it accesses memory block m2 if 2 < x ≤ 5. Subsequently, to formulate
cache conflicts generated by memory blocks (i.e. Constraints (5)-(6) for LRU policy
and Constraints (11)-(12) for FIFO policy) m1 and m2, we additionally constrain via
conditions (0 ≤ x ≤ 2) and (2 < x ≤ 5), respectively. For instance, we modify Θlru1 (i, j)
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to Θlru1 (i, j) ∧ (0 ≤ x ≤ 2) for memory block m1 and to Θlru1 (i, j) ∧ (2 < x ≤ 5) for
memory block m2. In future, we aim to build such extension to instantiate performance
debugging on a set of inputs, which are captured symbolically by path conditions.

5 Evaluation

We have implemented MESS using simplescalar [6] and Z3 constraint solver [5]. In
our evaluation, we configure a multi-core system with dual-core processor, where each
core has a private level-one cache and all the cores share a level-two cache. This is
a typical design in many embedded systems, such as devices using Exynos 5250 [4],
which, in turn, contains a dual-core, ARM Cortex-A15 [1] chip. We configure 1 KB
level-one caches with associativity 2 and 2 KB level-two cache with associativity 4.
All caches have a line size of 32 bytes. Cache sizes are chosen in a fashion such that
we obtain enough accesses to the shared cache and therefore, generate a reasonable
number of constraints in our framework (see the Appendix for experiments with dif-
ferent cache configurations). To evaluate our framework, we have chosen medium to
large size programs from [17], which are generally used to validate timing analyzers.
We have also used a robot controller from [3]. which contains two tasks — balance
(to help the robot to keep it in upright position) and navigation (to drive the robot
through rough terrain). These two tasks are assigned to different cores in our configured
dual-core system.

Experimental setup For our evaluation with programs from [17], we run jfdctint
on one core and choose different programs to run on the other core. We use such a setup
in order to check the influence of the same inter-core cache conflicts on different pro-
grams. For the robot controller, we run balance and navigation on two different
cores. The first two columns in Table 1 list the set of programs and the respective size
of source code. We monitor the execution on each core by instrumenting memory ac-
cesses in Simplescalar. At the end of the execution, we generate a summary of memory
performance for each core, which, in turn are used to generate constraints. The gener-
ated constraints are solved via Z3. All evaluations have been performed on an Intel I7
machine, having 8 GB of RAM and running ubuntu 14.04 operating systems.

Basic results Table 1 outlines the basic evaluation of our framework. We set the shared-
cache miss-penalty (hit-latency) to be 100 (1) cycles. Recall that we aim to check the
validity of temporal constraints

∑
i,j δ

j
i < τ . We generate a number of temporal con-

straints by varying τ from 200 to 3100 cycles, at a step of 100 cycles and for each such
temporal constraint, we invoke our framework. Note that τ captures all possibilities
between two to thirty one shared-cache misses. Besides, in

∑
i,j δ

j
i , we only consider

shared-cache accesses ij , whose latency were unknown during the investigation of each
core in isolation (cf. Column 4 in Table 1). Therefore, any shared-cache access ij , which
incurs the first-ever cache miss of the respective memory block σji , is not included in∑
i,j δ

j
i . In Table 1, we report the maximum and geometric mean over the time to check

all temporal constraints. For several cases, this maximum time was recorded for a valid
temporal constraint, meaning that the solver failed to find a violation. We can observe
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Program Total lines Shared-cache #shared-cache Size of #violations Time to generate Solver time (secs)
of C code repl. policy access constraints constraints (secs) Max. / Geo. Mean

cnt 642 LRU 432 2111 22 1.17 25.01 / 1.84
+jfdctint FIFO 432 6586 22 9.52 161.83 / 15.73
expint 532 LRU 433 2166 23 1.22 10.84 / 2.16

+jfdctint FIFO 433 6643 23 9.62 576.56 / 20.02
qurt 541 LRU 448 2817 30 1.88 24.81 / 3.16

+jfdctint FIFO 448 7272 30 9.38 31.77 / 11.59
matmult 538 LRU 436 2283 28 1.31 244.39 / 1.91
+jfdctint FIFO 436 6758 28 9.69 15495.83 / 12.82

fdct 614 LRU 479 3943 30 2.99 17.49 / 5.01
+jfdctint FIFO 479 8418 30 11.85 44.31 / 21.44
nsichneu 4628 LRU 1679 40087 30 49.2 17120.46 / 7904.08
+jfdctint FIFO 1679 44562 30 15.35 27534.20 / 15174.8
balance 2098 LRU 772 3881 30 0.23 155.17 / 63.94

+navigation FIFO 773 6770 30 0.56 389.68 / 184.32

Table 1. Evaluation of our baseline framework: “lines of C code” considers the sum of source
code of two programs running on two different cores, “#violations” captures the number of vio-
lations within the set of 30 temporal constraints {

∑
i,j δ

j
i < 200, . . . ,

∑
i,j δ

j
i < 3100}.

that, for many scenarios, the solver returns a solution in reasonable time. However, with
large number of constraints, the solver takes long time to find a solution. For instance,
with program nsichneu, such a scenario happens due to its large size and a substan-
tial number of accesses to the shared-cache. In general, finding a solution for FIFO
policy takes longer time compared to LRU policy, due to a larger constraint-size.

Program Replacement policy Max. #constraints Solver time Max. delay
(
max

∑
i,j δ

j
i

)
of the shared-cache (in seconds) (in CPU cycles)

baseline approx baseline approx baseline approx
cnt+jfdctint LRU 2111 154 23.58 4.39 2394 3285

FIFO 6586 513 116.49 14.35 2300≤X<2400 3285
expint+jfdctint LRU 2166 207 10.84 4.77 2494 3385

FIFO 6643 526 409.39 14.58 2400≤X<2500 3385
qurt+jfdctint LRU 2817 305 565.91 9.2 3884 6161

FIFO 7272 631 TO 29.03 ≥3900 6061
matmult+jfdctint LRU 2283 154 244.39 5.23 2988 4473

FIFO 6758 513 15495.83 15.98 2900≤X<3000 4473
fdct+jfdctint LRU 3943 304 TO 22.31 ≥6200 10116

FIFO 8418 599 TO 66.4 ≥6200 10116
nsichneu+jfdctint LRU 40087 2862 TO 764.56 ≥10000 31500

FIFO 44562 3137 TO 926.45 ≥10000 31500
balance+navigation LRU 3881 442 93.32 12.81 12800≤X<12900 13200

FIFO 6770 818 182.68 25.08 12200 12200

Table 2. Efficiency and precision of our approximation. TO denotes timeout (>5 hours). “Max.
#constraints” capture the maximum number of constraints solved by Z3 over all invocations.

Evaluation of the approximate solution Table 2 compares our approximation and the
baseline framework. As clearly observed, our approximation dramatically reduces the
debugging time, compared to the baseline framework. This is due to the partitioning
of constraints with respect to different cache sets. Such constraint partitioning drasti-
cally reduces the number of constraints to be solved together, leading to a substantial
reduction of pressure to Z3. As our approximation may generate false positives, we
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also compare the precision of our approximation compared to the baseline framework.
In order to do this, we compare the maximum delay computed by our approximation
with the maximum delay computed by the baseline framework. This maximum delay
captures the sum of all delays to access the shared-cache. For our baseline framework,
obtaining such maximum delay may incur large overhead (we used symba [21] to com-
pute the maximum delay). In such cases, we use the time taken by the solver to validate
a temporal constraint

∑
i,j δ

j
i < τ . This means that the maximum delay cannot exceed

τ − 1. For instance, in Table 2, 2300≤X<2400 indicates that the solver found a solution
for
∑
i,j δ

j
i ≥ 2300, but not for

∑
i,j δ

j
i ≥ 2400. The respective debugging-time captures

the time taken by the solver for
∑
i,j δ

j
i ≥ 2400. Finally, we use a timeout of five hours

for the solver. For instance, the timeout event happens for the program fdct. From
Table 2, we also observe that the precision of our approximation scheme is reasonable,
in the context of validating embedded software. Finally, we note that with the current
state-of-the-art solutions (e.g. using [21]), discovering the exact worst-case ordering
among memory accesses (in terms of performance), is not very efficient.

Notes on scalability We have implemented a proof-of-concept of MESS. We have also
shown an approximation, which dramatically improves the solver performance, with
a reasonable loss of precision. We believe that several optimizations are still possible.
In particular, as shown in [19], other optimizations for parallel constraint-solving is
feasible. We are exploring such techniques to further improve the efficiency of MESS.

6 Related work

Testing and debugging of multi-threaded applications has been an active topic of re-
search for the last few years [24,12,19,29,26,23,30,7]. For multi-threaded applications,
the key challenge is to detect thread scheduling patterns that may lead to software func-
tionality bugs. On the contrary, we systematically detect the order of memory accesses
that may lead to performance bugs on multi-core platforms. Our approach concentrates
on resource sharing in parallel architectures, rather than data sharing in parallel appli-
cations. However, to consider shared data in our framework, an approach similar to [19]
can be integrated easily into our constraint system.

Modeling shared-cache performance has been an active topic of research in the
past decade [25,27,31,15,14,28]. These works aim to provide an average confidence on
the performance of shared caches. In contrast, we aim to bring the power of formal
methods to provide strong guarantees on the presence or absence of performance bugs
due to shared-caches. We believe that such guarantees are crucial for time-critical code
fragments and our work is a preliminary step to establish such guarantees.

A different line of work [9] aims to synthesize correct and optimal concurrent pro-
grams from their specification and a performance model. The goal of the proposed
approach is to synthesize partial programs, which are not only correct, but also optimal,
with respect to the given performance model. Our work in this paper is orthogonal to
efforts in program synthesis, such as the approach taken in [9]. Instead of generating
correct and optimal programs from their specification, we aim to discover performance
bugs in the original implementation of software. The presence of performance bugs in
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implementation is, in general, inevitable. Therefore, our approach is inclined towards
performance debugging. However, we believe that our approach can be complimentary
to synthesis approaches. For instance, a performance debugger can highlight the code
fragments that could be refactored optimally.

Recent works on performance testing [8,20] have either targeted sequential appli-
cations or the targeted bugs can be discovered by exploring exactly one interleaving,
namely canonical schedule [20]. However, the order of memory accesses may dramat-
ically influence the overall performance. Therefore, our primary goal is to highlight
the order of shared-cache accesses that expose a performance bug (i.e. violates a given
temporal constraint). Our previous work [11] aims to generate performance-stressing
execution in embedded GPUs and it is not suitable for reproducing or debugging per-
formance bugs. Besides, in this paper, we provide strong guarantees on the absence of
performance bugs, when a given temporal constraint is not invalidated by the solver.

Works on worst case execution time (WCET) analysis have recently made progress
in the context of multi-core platforms [10]. As the name suggests, WCET captures the
maximum execution time of an application over all possible inputs and interleaving pat-
terns. In this paper, our goal is orthogonal to approaches taken in WCET analysis. In
particular, for a given program input, we aim to discover the interleaving pattern that
causes the violation of temporal constraints. Therefore, our work has a significant test-
ing and debugging flavour compared to the approaches proposed via WCET analysis.

In summary, previous works on automated debugging have mostly concentrated
on functionality bugs or performance bugs on single-core systems. In this paper, we
propose a systematic debugging approach that highlights performance bugs on multi-
core systems, with a specific focus on shared caches.

7 Conclusion

In this paper, we have proposed MESS, a constraint-based framework to debug memory
performance in multi-core systems. MESS systematically finds the interleaving pattern
that causes the violation of temporal constraints. An appealing feature of our frame-
work is its ability to provide guarantees on the absence of performance bugs, such
as the validity of temporal constraints, for a given input. We have also integrated an
approximation scheme, which, with a reasonable loss of precision, improves the de-
bugging time by several magnitudes. In general, this opens up several opportunities to
improve the debugging time enforced by MESS. Our evaluation with several embedded
software and also with a real-life robot controller shows the effectiveness of our ap-
proach. Finally, since the performance of constraint solvers is continuously improving,
we believe that MESS proposes a promising approach for performance debugging on
multi-core systems. In future, we aim to build on our approach to consider shared data
and other crucial shared resources in multi-core systems, such as shared buses. We also
aim to use MESS to automatically synthesize fixes of performance bugs. One possible
approach would be to synthesize barriers. The primary purpose of such barriers will be
to satisfy a given temporal constraint, via restricting certain interleaving patterns.
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Appendix

The content of this section is not part of the main paper and it can be skipped. We
provide this additional content to include illustrated examples, proofs and additional
experiments. Readers, who want more detail, may read it at their discretion.

Examples of our constraint system

In the following, we show the constraints generated for the example in Figure 1(a).

Example: constraint system for LRU caches

Consider a shared-cache with associativity 2 and employing LRU replacement policy.
For the sake of simplicity, we shall assume that all accesses in Figure 1(a) go through
the shared cache. At the first phase, executions of Program x and Program y are
recorded in isolation. In particular, for Program x, we record the following informa-
tion:

– ζ1
x = 〈φ, φ〉, σ1

x = m1, and age1
x = 3 (cache miss),

– ζ2
x = 〈m1, φ〉, σ2

x = m2 and age2
x = 3 (cache miss),

– ζ3
x = 〈m2,m1〉, σ3

x = m1 and age3
x = 2,

– ζ4
x = 〈m1,m2〉, σ4

x = m1 and age4
x = 1, and

– ζ5
x = 〈m1,m2〉, σ5

x = m2 and age5
x = 2.

Let us now consider the formulation of constraints for x4. The memory block ac-
cessed at x4 (i.e. σ4

x) is m1. The set of memory blocks conflicting with σ4
x, or C4

x is
{m2,m1′,m2′}. Within C4

x, {m1′,m2′} may generate inter-core cache conflicts. Con-
sider the memory blockm1′.m1′ can be accessed at y1 and y3. Besides, x1 and x3 access
memory block m1 prior to the shared-cache access x4 and they might hide the cache
conflict generated by memory block m1′. Therefore, ψlrucft

(
y1, x4

)
and ψlruref

(
y1, x4

)
are

formulated as follows.
ψlrucft

(
y1, x4) ≡ O1

y < O4
x (22)

ψlruref
(
y1, x4) ≡ ¬ (O1

y < O1
x ∧ O1

x < O4
x

)∧
¬
(
O1
y < O3

x ∧ O3
x < O4

x

)
(23)

Since both y1 and y3 access memory block m1′, ψlrucft
(
y3, x4

)
and ψlruref

(
y3, x4

)
are for-

mulated similarly as follows.

ψlrucft
(
y3, x4) ≡ O3

y < O4
x (24)

ψlruref
(
y3, x4) ≡ ¬ (O3

y < O1
x ∧ O1

x < O4
x

)∧
¬
(
O3
y < O3

x ∧ O3
x < O4

x

)
(25)

Recall that the generation of cache conflict bym1′ to x4 is captured via Ψ4
x(m1′). Hence,

Ψ4
x(m1′) is set via the following constraints.(

ψlrucft
(
y1, x4) ∧ ψlruref (y1, x4))⇒ (

Ψ4
x(m1′) = 1

)
(26)
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ψlrucft

(
y3, x4) ∧ ψlruref (y3, x4))⇒ (

Ψ4
x(m1′) = 1

)
(27)

The absence of cache conflict from m1′ needs to consider both y1 and y3, and it is,
therefore, formalized as follows.(

¬ψlrucft
(
y1, x4) ∨ ¬ψlruref (y1, x4)) ∧(¬ψlrucft (y3, x4) ∨ ¬ψlruref (y3, x4))

⇒
(
Ψ4
x(m1′) = 0

)
(28)

In a similar fashion, we can generate constraints to formulate the value of Ψ4
x(m2′).

Finally, the delay faced by x4 (i.e. δ4
x) can be determined using the following constraints.(

Ψ4
x(m1′) + Ψ4

x(m2′) ≥ 2
)
⇒
(
δ4
x = MISS

)
(29)(

Ψ4
x(m1′) + Ψ4

x(m2′) ≤ 1
)
⇒
(
δ4
x = HIT

)
(30)

Consider the interleaving pattern in Figure 1(e). Such an interleaving pattern is captured
via the ordering O1

y < O1
x < O2

x < O3
x < O2

y < O4
x < O3

y < O4
y < O5

x. Since O1
y < O3

x <

O4
x, ψlruref (y1, x4) will be evaluated to false (cf. Constraint (23)). In a similar fashion,

since O4
x < O3

y, ψlrucft(y3, x4) will also be evaluated to false (cf. Constraint (24)). As a
consequence, we shall observe that Ψ4

x(m1′) will be evaluated to zero. Hence, m1′ does
not generate any cache conflict at x4. This will eventually result in a shared-cache hit
at x4, as was observed in our example (cf. Figure 1(f)).

Example: constraint system for FIFO caches

Consider our example in Figure 1 along with a shared cache with associativity 2 and
employing FIFO replacement policy. In the first stage, we record the information from
each core in isolation. At the end of first stage, we obtain the following information for
Program x and Program y:

– ζ1
x = 〈φ, φ〉, σ1

x = m1 and age1
x = 3 (cache miss),

– ζ2
x = 〈m1, φ〉, σ2

x = m2 and age2
x = 3 (cache miss),

– ζ3
x = 〈m2,m1〉, σ3

x = m1 and age3
x = 2,

– ζ4
x = 〈m2,m1〉, σ4

x = m1 and age4
x = 2,

– ζ5
x = 〈m2,m1〉, σ5

x = m2 and age5
x = 1,

– ζ1
y = 〈φ, φ〉, σ1

y = m1′ and age1
y = 3 (cache miss),

– ζ2
y = 〈m1′, φ〉, σ2

y = m2′ and age2
y = 3 (cache miss),

– ζ3
y = 〈m2′,m1′〉, σ3

y = m1′ and age3
y = 2, and

– ζ4
y = 〈m2′,m1′〉, σ4

y = m2′ and age4
y = 1.

Note that, for FIFO policy, there exists a minor difference for shared-cache access x4.
In the following, we shall illustrate how the constraint generation for x4 differs from
the same in LRU policy. The set of memory blocks conflicting to σ4

x is {m2,m1′,m2′}.
Therefore, C4

x = {m2,m1′,m2′}. Within C4
x, consider the memory block m1′. m1′ is

accessed at y1 and y3. Therefore, we formulate ψfifocft

(
y1, x4

)
and ψfiforef

(
y1, x4

)
as fol-

lows.
ψfifocft

(
y1, x4) ≡ (O1

y < O4
x

)
∧
(
δ1
y = MISS

)
(31)
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ψfiforef

(
y1, x4) ≡ ¬ (O1

y < O1
x ∧ O1

x < O4
x ∧ δ1

x = MISS
)∧

¬
(
O1
y < O3

x ∧ O3
x < O4

x ∧ δ3
x = MISS

)
(32)

Note that we additionally guard Constraints (31)-(32) via conditions
(
δ1
y = MISS

)
,(

δ1
x = MISS

)
and

(
δ3
x = MISS

)
, respectively. This is because, for FIFO policy, cache

conflict is generated only in the presence of cache misses (cf. Section 3.2).
Since both y1 and y3 access memory block m1′, ψfifocft

(
y3, x4

)
and ψfiforef

(
y3, x4

)
are formulated similarly as follows.

ψfifocft

(
y3, x4) ≡ (O3

y < O4
x

)
∧
(
δ3
y = MISS

)
(33)

ψfiforef

(
y3, x4) ≡ ¬ (O3

y < O1
x ∧ O1

x < O4
x ∧ δ1

x = MISS
)∧

¬
(
O3
y < O3

x ∧ O3
x < O4

x ∧ δ3
x = MISS

)
(34)

The generation of cache conflict by m1′ to x4 is captured via Ψ4
x(m1′). Hence, Ψ4

x(m1′)

is set via the following constraints.(
ψfifocft

(
y1, x4) ∧ ψfiforef

(
y1, x4))⇒ (

Ψ4
x(m1′) = 1

)
(35)(

ψfifocft

(
y3, x4) ∧ ψfiforef

(
y3, x4))⇒ (

Ψ4
x(m1′) = 1

)
(36)

From Section 3.2, recall that for FIFO policy, we need to formulate constraints that take
into account the cache-conflict generation both within cores and across cores. There-
fore, we also generate constraints to set the value of Ψ4

x(m2′) and Ψ4
x(m2) as follows.(

ψfifocft

(
y2, x4) ∧ ψfiforef

(
y2, x4))⇒ (

Ψ4
x(m2′) = 1

)
(37)(

ψfifocft

(
y4, x4) ∧ ψfiforef

(
y4, x4))⇒ (

Ψ4
x(m2′) = 1

)
(38)(

ψfifocft

(
x2, x4) ∧ ψfiforef

(
x2, x4))⇒ (

Ψ4
x(m2) = 1

)
(39)

It is worthwhile to note that only shared-cache access x2 (accessing m2) can generate
cache conflict to x4 within a single core. This is because x2 appears before x4 in program
order, but x5 does not appear before x4 in program order. In particular, ψfifocft

(
x2, x4

)
and ψfiforef

(
x2, x4

)
are determined in a similar fashion as follows.

ψfifocft

(
x2, x4) ≡ (O2

x < O4
x

)
∧
(
δ2
x = MISS

)
(40)

ψfiforef

(
x2, x4) ≡ ¬ (O2

x < O1
x ∧ O1

x < O4
x ∧ δ1

x = MISS
)∧

¬
(
O2
x < O3

x ∧ O3
x < O4

x ∧ δ3
x = MISS

)
(41)

The formulation to capture the absence of cache conflict is similar to LRU policy, as
shown in the following.(

¬ψfifocft

(
y1, x4) ∨ ¬ψfiforef

(
y1, x4)) ∧(¬ψfifocft

(
y3, x4) ∨ ¬ψfiforef

(
y3, x4))

⇒
(
Ψ4
x(m1′) = 0

)
(42)
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¬ψfifocft

(
y2, x4) ∨ ¬ψfiforef

(
y2, x4)) ∧(¬ψfifocft

(
y4, x4) ∨ ¬ψfiforef

(
y4, x4))

⇒
(
Ψ4
x(m2′) = 0

)
(43)

(
¬ψfifocft

(
x2, x4) ∨ ¬ψfiforef

(
x2, x4))⇒ (

Ψ4
x(m2) = 0

)
(44)

Finally, the delay faced by x4 (i.e. δ4
x) can be determined using the following con-

straints. (
Ψ4
x(m1′) + Ψ4

x(m2′) + Ψ4
x(m2)) ≥ 2

)
⇒
(
δ4
x = MISS

)
(45)(

Ψ4
x(m1′) + Ψ4

x(m2′) + Ψ4
x(m2) ≤ 1

)
⇒
(
δ4
x = HIT

)
(46)

To understand the difference between LRU and FIFO policy, consider the interleaving
patternO1

y < O1
x < O2

x < O3
x < O2

y < O4
x < O3

y < O4
y < O5

x in Figure 1(e). Even though
O2
x < O3

x < O4
x, ψfiforef (x2, x4) will be evaluated to true (cf. Constraint (41)). This is due

to the guard condition δ3
x = MISS , which will be false for the respective interleaving

pattern. As a result, unlike LRU policy, the cache conflict generated by m2 will not be
hidden by x3. This will eventually result in a cache miss at x4, as was observed in our
example (cf. Figure 1(e)).

Property 1 Let us assume {s1, s2, . . . , sq} are different sets in the shared cache. For a
given temporal constraint

∑
i,j δ

j
i < τ , if our baseline constraint system Φ (cf. Con-

straint (15)) is satisfiable, then
∑
r∈[1,q] ∆(sr) ≥ τ . In other words, our approximation

scheme will never miss the violation of any temporal constraint.

Proof. For an arbitrary cache set sk, we shall show that Γ (sk) (cf. Constraint (19))
includes all constraints that could influence the value

∑
i,j: π(σ

j
i )=sk

δji . Therefore,∆(sk)

captures a sound over-approximation of the delay
∑
i,j: π(σ

j
i )=sk

δji . Since this result
holds for an arbitrary cache set sk,

∑
k∈[1,q] ∆(sk) is a sound over-approximation of the

total delay to access the shared cache, i.e. of
∑
i,j δ

j
i .

Let us now consider an arbitrary cache set sk. Therefore, from Equation (20), we
can observe that ∆(sk) includes the symbolic delay δji , if and only if σji is mapped to
cache set sk (i.e. π(σji )=sk). Consider one such symbolic delay δji . We first need to show
that Γ (sk) includes all constraints that might influence the value of δji . The value of δji is
influenced by Constraints (5)-(8) for LRU policy and by Constraints (11)-(14) for FIFO
policy. Note that Constraints (5)-(8) and Constraints (11)-(14) consider shared-cache
access ij and any shared-cache access īj̄ , only if σji is conflicting to σj̄

ī
(i.e. σj̄

ī
∈ Cji ).

Therefore, Γ (sk) must include all constraints (from our baseline framework) that con-
sider shared-cache access ij and any shared-cache access īj̄ , where σj̄

ī
∈ Cji . From

Constraints (16)-(18), we can observe that Γ (sk) considers any shared-cache access ij ,
where σji is mapped to cache set sk. From the design principle of caches, we know that
σj̄
ī
∈ Cji if and only if σj̄

ī
and σji are mapped to the same cache set or π(σj̄

ī
) = π(σji ).

Since σji is mapped to cache set sk, σj̄
ī

is also mapped to cache set sk. Hence, Con-
straints (17)-(18) include all constraints that might influence the value of δji . Since we
started with an arbitrary δji , this result holds for any δji included in ∆(sk). Therefore, we
conclude that Γ (sk) includes all constraints that can influence the value

∑
i,j: π(σ

j
i )=sk

δji
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(cf. Equation (20)). Since sk is an arbitrary cache set, ∆(sk) captures a sound over-
approximation of

∑
i,j: π(σ

j
i )=sk

δji , for each cache set sk. Therefore, our approximation
scheme never misses the violation of any temporal constraint.

Additional experiments

We evaluate our framework with multiple cache configurations. In order to do this, we
choose the robot controller and instantiate our framework for multiple cache config-
urations. Figures 5-7 capture the evaluation for LRU cache replacement policy. From
Table 2, we observe that 12800 ≤

∑
i,j δ

j
i < 12900, for LRU policy. We aim to check

the influence of cache size on the threshold of
∑
i,j δ

j
i . Therefore, we generate temporal

constraints of the form
∑
i,j δ

j
i < τ , by varying τ from 12000 to 13000 CPU cycles, at a

step of 100 cycles. In a similar fashion, for FIFO policy, we generate the set of temporal
constraints {

∑
i,j δ

j
i < 10000,

∑
i,j δ

j
i < 10100, . . . ,

∑
i,j δ

j
i < 11900,

∑
i,j δ

j
i < 12000}

(since
∑
i,j δ

j
i = 12200 for FIFO policy, see Table 2). Figures 8-10 capture our evalua-

tion for FIFO policy.
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Fig. 5. Number of violations of temporal constraints with respect to shared-cache size (LRU)

Note that, in
∑
i,j δ

j
i , we only consider shared-cache accesses ij , whose latency

were unknown during the investigation of each core in isolation. Therefore, any shared-
cache access ij , which incurs a shared-cache miss during the investigation of each core
in isolation, is not included in

∑
i,j δ

j
i . For instance, in Figure 5 and in Figure 8, we

observe that the number of violations increases when the cache size is changed from 2
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Fig. 6. Number of constraints with respect to shared-cache size (LRU)
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Fig. 7. Time taken by our framework with respect to shared-cache size (LRU)



28 Sudipta Chattopadhyay

 0

 5

 10

 15

 20

2 KB 4 KB 8 KB 16 KB 32 KB 64 KB 128 KB

N
u
m

b
e
r 

o
f 

v
io

la
ti

o
n
s

Cache size

Number of violations of temporal constraints with respect to cache size

#violations

Fig. 8. Number of violations of temporal constraints with respect to shared-cache size (FIFO)
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Fig. 9. Number of constraints with respect to shared-cache size (FIFO)
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Fig. 10. Time taken by our framework with respect to shared-cache size (FIFO)

KB to 4 KB. This is because, an increased cache size may reduce the number of shared-
cache misses within cores, leading to more accesses ij to be included in

∑
i,j δ

j
i . This

may potentially lead to more violations of temporal constraints in our framework. It is,
however, important to realize that increased cache size (with the same associativity and
line-size) will always lead to reduced latency. As captured in Figure 5 and in Figure 8,
the number of violations drops to zero when the cache size is changed to 8 KB or more.
Thus, we can conclude that shared-cache-misses, due to inter-core cache conflicts, do
not reach the timing threshold captured by any temporal constraint. This result also
helps to choose an appropriate cache size for the respective application, given an input
and timing threshold. For instance, given a timing threshold of 10000 CPU cycles, we
can choose an 8 KB, FIFO cache for the robot controller.

Number of constraints may increase with cache size. This is because, the number
of shared-cache accesses, which were not cache misses during the investigation of each
core in isolation, may increase. As a result, we need to generate additional constraints
for such shared-cache accesses. This behaviour was observed when the cache size was
changed from 2 KB to 4 KB (cf. Figure 6 and Figure 9). However, the number of con-
straints decreases when the cache size is increased beyond 4 KB. This is because, an
increased cache also reduces conflicting memory blocks to a particular shared-cache
access. Recall that we need to generate constraints for each conflicting memory block
(cf. Constraints (5)-(6) and Constraints (11)-(12)). As a result, increasing the cache size
will also reduce the number of constraints to be considered in our framework.

Since the time taken by our framework directly depends on the number of gener-
ated constraints, we observe that the solver time increases when cache size is increased
to 4 KB. Subsequently, the time taken by the solver reduces by several factors, and
eventually becomes negligible with very large caches (cf. Figure 7 and Figure 10).
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Finally, the number of constraints generated in FIFO policy is relatively larger than
in LRU policy. As a result, the time taken by our framework for FIFO policy, is rela-
tively longer compared to LRU policy, as observed from our evaluation.
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