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Abstract—Embedded systems (ESs) have been widely used in
various application domains. It is very important to design ESs
that guarantee functional correctness of the system under strict
timing constraints. Such systems are known as the real-time
embedded systems (RTESs). More recently, RTESs started to
be utilized in safety and reliability critical areas, which made
the overlooked security issues, especially confidentiality of the
communication, a serious problem. Differential power analysis
attacks (DPAs) pose serious threats to confidentiality protection
mechanisms, i.e., implementations of cryptographic algorithms,
on embedded platforms. In this work, we present a scheduling
policy, SPARTA, that thwarts DPAs. Theoretical guarantees and
preliminary experimental results are presented to demonstrate
the efficiency of the SPARTA scheduler.

I. INTRODUCTION

Nowadays, it is common to find embedded systems control-

ling critical functionalities in various aspects of our society,

from consumer electronics to military weapons. Many of

these systems, called real-time embedded systems (RTESs),

are demanded to provide strict guarantees on the timeliness of

delivered results. In such systems, not only the correctness of

the final result is important, but the timing of the computation

is also vital for the system. That is, the system is expected to

deliver a correct result within a given deadline. How to achieve

timeliness has been widely studied under different contexts in

literature, for example, [1], [2].

The emerging trend of using embedded systems in safety

and reliability critical applications urges the needs of pro-

viding security properties. As security was often treated as

an afterthought by system designers, more and more security

drawbacks of various embedded systems, e.g., [3], as well as

embedded implementations of cryptographic algorithms, e.g.,

[4], have been revealed in recent years. In order to achieve

the best protection, in the presence of timing and resource

constraints imposed in embedded environment, the security

issues should be studied and taken into consideration during

the early system design and optimization phase, e.g., in [5].

Among the concepts of security, confidentiality is of central

importance. The fundamental step to achieve confidentiality

is to apply cryptography. Considering the actual constrained

environment of RTESs, the most applicable cryptographic

algorithm for confidentiality protection is the Advanced En-

cryption Standard (AES) [6], because of its robust protection

strength and high throughput rate on microprocessors [7]. We

will, in this paper, concentrate on AES, which is arguably the

most widely used cryptosystem. However, the concepts and

techniques presented in this paper are general enough to be

also applied on other iterated block ciphers.

The side-channel attacks (SCAs) targeting the implementa-

tions of cryptographic algorithms (including AES) pose severe

threats to RTES security. The authors of [8] presented an

automated hardware design methodology that inserts random

jitters for counteracting SCAs. In [9], a software approach

for generating random delays is proposed, and can be used

against SCAs. However, neither of these works can be applied

in RTESs, since the timing properties may be affected. Pre-

viously, we have studied the influence of existing schedulers

on difficulties of mounting differential power analysis attacks

(DPAs), a specific kind of SCA, on RTESs in [10]. However,

no extra protection scheme was presented. To the best of

our knowledge, this is the first scheduling policy that both

guarantees the real-time properties of the system and thwarts

potential DPAs on AES implementations.

II. THE SYSTEM

The system we consider is a mono-processor RTES. It is

connected with various peripherals, e.g., sensors, actuators,

and communication modules, via which it interacts with

the environment or other peers. The microprocessor μP is

implemented with tamper-proof technology [11] making the

operations and memory hierarchy not manipulatable. The set

of preemptive and periodic computation tasks running on the

microprocessor is denoted as T . The execution time and period

(also the deadline) of task τi ∈ T is denoted as ei and Ti,

respectively. Task τi may generate or/and receive a set of

messages Mi to interact with other nodes (Mi = ∅ if no

message is associated). The length (in number of AES block)

of message mij ∈ Mi is lij . The tasks are scheduled based on

the proposed policy which is elaborated in Section V.

To make sure the communication from/to the system is

confidential, we carry out AES on associated messages. The

messages in Mi are all processed with the same AES secret

key Ki. The AES encryption/decryption process τAES
ij on

message mij is part of the processing in task τi. In other

words, task τi (and execution time ei) includes the normal

computations of the task and the corresponding AES opera-

tions (and respective time overhead eAES
ij ) on all associated

messages mij ∈ Mi.

III. DPA ATTACKS AND COUNTERMEASURES

The attacker aims to find the secret key(s) of the system

using DPA attacks, and can accurately measure the power

consumption of the microprocessor. She knows the task param-

eters, e.g., their execution times and periods, and can replace

the messages to AES operations with arbitrary data, e.g., by
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changing the data from the sensors. As the microprocessor

is tamper-resistant, she cannot change the task schedule, or

directly read out the secret key(s) from memory.

A. DPA Attacks

AES is known to be robust against the theoretical crypt-

analysis attacks. However, the practical attacks on AES im-

plementations have presented serious threats to the security

of AES. In [4], Paul Kocher et al. presented the so-called

differential power analysis attack (DPA), one type of SCA,

that has become the most efficient attack scheme targeting

AES implementations on embedded platforms, e.g., [12]. The

power consumption of a device at a certain time depends on

the performed operations and processed data. For the case of

AES encryptions on different inputs with the same secret key,

the operations and involved secret keys are the same, at the

same relative time t with respect to corresponding start time

of AES. The differences in power consumption, in the ideally

noisy-free case, only come from the different input data.

The DPA attacks try to reveal an AES secret key Ki in

the granularity of subkey1, and the procedure is, in brief, as

follows. The attacker first identifies a fraction in an AES round

that is a function of a given text and a 8-bits subkey skij .

This fraction is referred to as a leakage point LPij . Of all the

AES encryption (or decryption) operations with the same AES

secret key Ki, the same subkey skij is used to operate on dif-

ferent input texts using the same function at LPij . Therefore,

there exists a certain relation among all the measured power

consumptions at LPij . After identifying LPij , the attacker

feeds the AES process with chosen plaintexts, and measures

the power of the processor. Then, based on period Ti of task τi,

she divides the whole obtained power trace (of G time units)

into S = G/Ti number of samples, and organizes the samples

into a 2D matrix P = [i− j](i = 1, ..., S; j = 1, ..., V ) with size

S ∗ V , in which V = Ti ×F . F is the measurement frequency

of her attacking equipment. Thus, V is the number of obtained

power values within Ti. Each Px,y denotes an actual measured

power value of sample x at relative time point y.

The next step is to produce the hypotheses regarding the

processor power at leakage point LPij . Since there are only

28 = 256 different possibilities of subkey skij , the attacker

can enumerate all the possible skij values on all the plaintexts

she used, and derive another 2D matrix H = [i − j](i =

1, ..., S; j = 1, ..., 256), each of which is a hypothetical power

value of corresponding plaintext-subkey pair, and is calculated

depending on her knowledge about the underlying hardware.

The last step is to find correlations between the actual power

of the processor and the attacker’s hypothetical power on each

column Pi of P and Hj of H, e.g., by calculating the Pearson

correlation coefficient (PCC) ρij . Column Pi and Hj has high

correlation if ρij is high. And the highest value ρmax = ρxy
reveals that sky was the real subkey used at relative time tx.

Then, the attacker tries to recover the whole secret key Ki by

going through all the subkeys, or until it is trivial to mount a

brute-force attack on the rest of the key bits.
1The definition and how to obtain the AES subkeys can be found in [6].

B. Time Dimension Shuffling Based Countermeasures

In order to make AES robust against DPA attacks, we need

to introduce countermeasures on the AES implementation.

As can be noticed from the previous sections, the DPA

attacks have certain limitations, i.e., the samples need to

be noise-free and well aligned. Having noise-free samples

means that the power of the processor is accurately predictable

from the preformed operations and processed data. Thus, the

attacker can make relatively accurate hypotheses, and the

highest correlation is obvious enough. This leads to the type

of countermeasures aiming at reducing the signal-noise-ratio

(SNR), e.g., [13]. In this work, we focus on exploiting the

second limitation of DPAs, which is that the values in column

Pi indicating the power value of all the samples at time i

should be due to the same operation.

Fig. 1 depicts two aligned power traces (indicated by supply

voltage) of AES on two different messages with the same

key K. The leakage point of the first subkey sk1 occurs at

1.2ms (highlighted by the red rectangle). Assuming that two

samples are sufficient to observe a high correlation with the

hypothetical powers, then the attacker can already retrieve

sk1 if Fig. 1 is obtained. However, if the two leakages

happened at different time, then she needs more samples to

observe a dominating correlation for obtaining sk1. Therefore,

what we propose in this paper is to reduce the alignment

probability of leakage points in the columns of matrix P .

Such an approach of implementing countermeasures is often

referred to as hiding in time dimension [14]. Note that both

countermeasure techniques are compatible with each other,

and it is recommended to implement multiple countermeasures

to achieve the best protection to the AES implementations.

As just mentioned, DPA attacks work better if the operations

at the same relative time point of all samples are the same.

That is, in all the samples, the leakage points all occur at

the same relative time with respect to the starting time of

the sample. However, just assigning random delays into the

execution, e.g., [9], does not work in the context of RTES,

since it may break the deadline constraints. In the meantime,

dynamic task schedulers, such as the earliest deadline first

policy (EDF), can serve as support for implementing the idea

of hiding in time dimension. Now the question is how to

quantify the performance of a scheduler as a countermeasure.

Assuming that the highest correlation between two columns

of P and H is ρmax, then our goal is to reduce ρmax. Due to

the preemptions introduced by the dynamic schedulers, the

occurrences of leakage point LPij with respect to skij may

happen at different times for different releases of task τi,

thus, reducing the value of ρmax. If ∀ρ : ρ ≈ 0, then there

is no dominating ρmax, that is, there is no clear correlation

between any columns of P and H. This is the optimal case in

terms of protection against DPA, meaning that the attacker

needs infinite amount of samples to observe a high ρmax.

Let us denote the moment of time when LPij happens with

the highest probability among all the samples as t̂. The

corresponding column of Pt̂ will have the highest correlation

with the column Hskij of H which is the actual subkey used
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Fig. 1. Power traces of AES on two plaintexts with the same secret key

in the leakage point. If the probability that the leakage point

occurs at t̂ is p̂, then, as shown in [14], we can calculate the

lower bound of the number of samples to observe a noticeable

ρmax as follows,

N = 3 +
13.148

ln2( 1+p̂
1−p̂

)
. (1)

Now, we define the robustness of the secret key Ki against

DPA attacks as the total amount of time needed to gather

those N samples:

Ri = N ∗ Ti, (2)

where Ti is the period of τi having the secret key Ki.

IV. AN ILLUSTRATIVE EXAMPLE

As mentioned in the previous section, the highest probability

p̂ that the leakage point occurs at the same relative time point t̂

determines the robustness of the key under analysis. One way

to get p̂ is through simulation of system execution, that is, to

simulate and record the system execution and then to apply

statistical methods on the recorded schedule. Thereafter, the

robustness of the key can be calculated using Eq. 2. Let us

consider a simple example with three tasks τ1, τ2, and τ3.

The execution times are 3, 8, and 9, respectively, and the

periods are 10, 20, and 30, respectively. Task τ1 and τ3 do

not have message communication, while, task τ2 generates one

128-bits long message m2, and encrypts it with AES before

sending it out over the communication module. Due to the

lack of space, we make the following simplification in the

rest of this paper: Each task is only associated with at most

one message encryption occurring in the end of its execution,

and the leakage point happens at the last δ time units of the

task execution time. However, all the presented techniques and

analyses can be trivially extended to more practical cases in

which a task can be associated with multiple messages, and

the leakage point can occur arbitrarily anywhere within task

executions. In this example, we assume that the 8-th time unit

of τ2 is the leakage point.

If the system is scheduled by EDF, we will get the schedule

as shown in Fig. 2 (a) for one hyperperiod HP of the task set

T . The hyperperiod of T is the least common multiplier of all

task periods, i.e., HP = 60 in this case, and is the minimal

time interval that the task execution pattern repeats. In other

words, the system schedule is identically repeating after one

hyperperiod. The gray rectangles represent the normal task

executions including the non-leakage parts of AES, and the

red rectangles depict the leakage points. Assuming that the

attacker measures the μP power at each time unit, she will

obtain 60 discrete power values, each of which corresponds to

a specific operation, e.g., task execution or AES, retrievable

from the simulated schedule in Fig. 2 (a). She then divides the

whole obtained power trace into 3 individual samples based

on T2 = 20 to align the samples (as depicted in Fig. 2 (b)). To

highlight the leakage points, we do not show the non-leakage

executions (the gray rectangles), since they are independent

from the leakages. After the simulated hyperperiod, the same

schedule will repeat. Therefore, we can find that the leakage

occurs at relative time t̂ = 13 with the highest probability

p̂ = 2
3
= 0.67. By now, we can calculate the robustness of the

key K2 using Eq. 2, i.e., R2 = 180.

However, this does not seem to be a satisfying solution.

An obvious alternative of scheduling the tasks is, for instance,

to exchange the execution order of the first leakage point at

t = 13 with the first fraction of τ3 from t = 14 to t = 19 as

shown in Fig. 3 (a). If we align the samples as explained just

now, we would get the result as in Fig. 2 (b). We can observe

that, now, the three leakage points occur at three different

times, i.e., t = 20, t = 16, and t = 13. However, this schedule

repeats after one hyperperiod, making p̂ = 1
3
= 0.33. Then the

robustness of K2 is R2 = 620.

An even better solution will be an enhanced random sched-

uler, which can both guarantee the deadlines and reduce the

value of p̂. Fig. 4 (a) illustrates the simulation of the system

with such a scheduler under the first hyperperiod [0,HP). As

can be noticed, the leakage points occur at three different

times, respectively. Furthermore, due to the randomness intro-

duced by the scheduler, the simulation of the next hyperperiod

(shown in Fig. 4 (b)) gives a different schedule than Fig. 4

(a). Thereby, if we align the two hyperperiods, we can get the

samples as in Fig. 4 (c). In fact, in order to get the actual

p̂, we need to simulate the system execution to an extended

timespan, and, consequently, we would get p̂ = 0.11 which

leads to R2 = 5460.

V. PROPOSED SCHEDULER

In this section, we present our EDF-based SPARTA sched-

uler and related theoretical guarantees. We use the following

notations to describe the scheduler:

• Ls : An ordered list of active tasks within time-interval

[Ts, Ts+1).

• L′
s : A list of tasks picked by SPARTA to be executed

within time-interval [Ts, Ts+1). Note that L′
s ⊆ Ls.
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Fig. 2. (a) The system schedule under EDF; (b) The aligned samples of (a)
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Fig. 3. (a) Another system schedule; (b) The aligned samples of (a)
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(b) (c)
Fig. 4. (a) A random schedule for one HP ; (b) A random schedule for another HP ; (c) The aligned samples of (a) and (b)

• rti : The execution time of a task τi to be carried out

within a given time-interval.

• eti : The execution time of a task τi, ignoring the execu-

tion time of its leakage point, to be carried out within a

given time-interval, and eti = rti − δ

• t′i : The time instant where the leakage of task τi starts.

• Xi : The time-interval of the leakage for task τi, i.e., Xi =

[t′i, t
′
i + δ).

• Zs : An ordered list of leakage points within [Ts, Ts+1).

In the following, we describe the workflow of SPARTA:

1) The scheduler is activated at each job arrival. The time

of the s-th activation of SPARTA is denoted as Ts.

At time Ts, the scheduler considers the set of tasks

to be executed within time-interval [Ts, Ts+1), and then

decides a concrete schedule of these tasks to help thwart

DPA attacks.

2) Unlike the EDF policy, which, at each task finish,

executes the task that is closest to its deadline, SPARTA

operates on a set of tasks that will be executed within

[Ts, Ts+1). It first sorts the active tasks at time Ts

based on the proximity to their respective deadlines. The

resulting sorted list is captured by Ls and the first entry

of Ls contains the task closest to its deadline.

3) The scheduler walks through Ls, starting from its first

entry. The scheduler continues picking a task from Ls,

until processor bandwidth within [Ts, Ts+1) is fully uti-

lized, or Ls becomes empty. The list of tasks picked by

the scheduler is kept into the list L′
s and rti captures the

execution time of τi to be carried out within [Ts, Ts+1).

Therefore, once the scheduler finishes walking through

Ls, the following relationship must hold:⎛
⎝ ∑

τi∈L′
s

rti = Ts+1 − Ts

⎞
⎠ ∨ (Ls = φ) . (3)

4) In this phase, SPARTA decides a concrete schedule of

tasks by first assigning leakage points at different time

instants. eti captures the execution time of task τi to

be carried out within [Ts, Ts+1), ignoring the execution

time of its leakage point. Therefore, eti = rti − δ (recall

that δ is the execution time of a leakage point), for

tasks with leakage points, and eti = rti, otherwise. Our

scheduler randomly picks a task τx1 , which has leakage

point, from L′
s and randomly allocates the leakage point

at time t′x1
. In order to preserve the timing constraints,

t′x1
must be within the time interval [Ts + etx1 , Ts+1).

Once t′x1
is assigned, the scheduler randomly selects

another task τx2 having leakage point and randomly

assigns its leakage point at time t′x2
, where t′x2

satisfies

the following condition:

t′x2
∈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[Ts + rtx1 + etx2 , Ts+1),

if t′x1
≤ Ts + etx1 + rtx2

[Ts + etx2 , Ts+1)\Xz1 ,

otherwise.

(4)

In general, SPARTA keeps an ordered list Zs for the

allocated leakage points. Zs is ordered based on the time

of occurrence of a leakage point and the first entry of

Zs holds the leakage point occurring the earliest in time.

Let us assume n leakage points have been assigned (i.e.
|Zs| = n) and these leakage points are ordered in Zs

as follows: t′z1 < t′z2 < . . . < t′zn−1
< t′zn . To assign

the leakage point of a task τxn+1 (from L′
s), we choose
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t′xn+1
, satisfying the following criteria:

t′xn+1
∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[Ts +

n∑
i=1

rtzi + etxn+1 , Ts+1),

if t′zn ≤ Ts +

n−1∑
i=1

rtzi + etzn + rtxn+1

[Ts +

n−1∑
i=1

rtzi + etxn+1 , Ts+1)\Xzn ,

if t′zn > Ts +

n−1∑
i=1

rtzi + etzn + rtxn+1

∧t′zn−1
≤

n−2∑
i=1

rtzi + etzn−1 + rtxn+1

. . .

[Ts + etxn+1 , Ts+1)\
⋃

i∈[1,n] Xzi , otherwise.

(5)

This step ends when all the leakage points are allocated.

5) Once all the leakage points are assigned, we try to

glue the task executions as tight as possible to reduce

preemptions. Let us assume that the list Zs is ordered

as follows: t′z1 < t′z2 < . . . < t′zl−1
< t′zl , where |Zs| = l.

Our scheduler picks τz1 and assigns the remaining

execution time etz1 directly before t′z1 . Similarly, the

remaining execution time of τz2 (i.e. etz2 ) is alloted

before t′z2 . Once the remaining execution time of all the

tasks in Zs has been allocated, the tasks in (L′
s \ Zs),

that is, tasks without leakage points, are considered.

In particular, each such task is scheduled by greedily

occupying the first available time slots.

As can be noticed, we consider each task to be associated

with at most one message, and the leakage point always occurs

at the end of the task execution. However, it is worthwhile to

mention that the scheduler can be extended to support the

situations where a task is associated with multiple messages,

and the leakage point occurs at an arbitrary position in

the execution. Both aspects can be solved by dividing the

task into subtasks based on occurrences of leakage points.

Subsequently, the assignments of leakage points can be carried

out on these subtasks similar to Eq. 5.

A. Schedulability Guarantee

SPARTA satisfies the following crucial property.

Property 5.1: Let us assume that Zs holds l entries after all

leakage points have been assigned and the list Zs is ordered

as follows: t′z1 < t′z2 < . . . < t′zl−1
< t′zl , where |Zs| = l.

Our scheduler guarantees that for all i ∈ [1, l], the remaining

execution time etzi of task τzi is assigned before t′zi .
Proof: To prove for the general case, we consider an

arbitrary leakage point t′zn . Let us distinguish between the

following scenarios to show that the assignment of t′zn is safe.

• Case I: All the tasks τzi,∀i∈{1,2,...,n−1} have been pro-

cessed from list L′
s before task τzn (cf. step 4 of SPARTA).

– Subcase A: t′zn > t′zn−1
, because t′zn cannot be

placed before any t′zi , where i ∈ [1, n − 1]. From

Eq. 5, we can observe that this scenario must happen

for the first case, i.e., when the lower bound of t′zn is

at least Ts +
∑n−1

i=1 rtzi + etzn . This directly implies

the fact that the non-leakage part of τzn can finish

before t′zn . This is because of the assignment via

Eq. 5, as t′zn ≥ Ts +
∑n−1

i=1 rtzi + etzn .

– Subcase B: t′zn > t′zn−1
, but t′zn could have been

placed before some t′zi , where i ∈ [1, n − 1], ac-
cording to Eq. 5. This means t′zn might, at least,

be assigned before t′zn−1
, according to Eq. 5. Based

on the constraints starting from the second condi-

tion in Eq. 5, we can observe that t′zn−1
> Ts +∑n−2

i=1 rtzi +etzn−1 +rtzn = Ts+
∑n

i=1 rtzi −δ. From

our hypothesis, we have t′zn > t′zn−1
. Therefore,

t′zn > t′zn−1
> Ts +

∑n
i=1 rtzi − δ. This also implies

directly that the assignment of t′zn is safe.

• Case II: There is at least one task τzi (i ∈ [1, n− 1]) that

was processed from list L′
s after task τzn (cf. step 4 of

SPARTA). Consider the last task, say τzy (y ∈ [1, n− 1]),

with leakage point assigned within [Ts, t
′
zn). The reason

why t′zy can be assigned before t′zn is that there is

sufficient processor bandwidth left for τzy before t′zn .

From the constraints of Eq. 5, we know this is possible

only if t′zn > Ts +
∑

i∈{1,2,...,n−1}\{y} rtzi + etzn + rtzy .

Therefore, t′zn > Ts +
∑n

i rtzi − δ. This proves that the

assignment of t′zn is safe.

Schedulability test: From Property 5.1, we can state that

SPARTA guarantees the assignments of leakage points to be

safe. This means, within a time-interval [Ts, Ts+1), SPARTA

guarantees to schedule all tasks from the list L′
s, which is the

same set of tasks (along with their respective execution time

to be carried out within the time-interval [Ts, Ts+1)) picked

by a classic EDF scheduler. Since the choice of [Ts, Ts+1)

is arbitrary, we can conclude that the schedulability test for

SPARTA is exactly the same as of EDF.

B. Upper-bound of Context Switches

Property 5.2: The total number of system context switches2

introduced by SPARTA is at most 2 times of that implied by

EDF. The proof is skipped due to space limit.

C. Complexity of SPARTA

Property 5.3: The complexity of each SPARTA activation

is O(n2). The proof is skipped due to space limit.

VI. EXPERIMENTAL RESULTS

In order to evaluate the achieved protection strength against

DPA attacks enhanced by SPARTA, we have performed exper-

imental evaluations under two representative criteria, i.e., dif-

ferent processor utilization levels and different problem sizes

(different amount of tasks). Each task τi is associated with at

most one message mi with length li = 1. The task periods

are chosen uniformly at random from {200, 400, ..., 2000} to

avoid simulation of long hyperperiods. On each problem size,

the task execution times were randomly generated under the

current utilization level.

We have implemented SPARTA in C, and conducted exper-

iments under a simulation environment on a Linux machine
2We refer to the start of a task execution or continuation of a task after

being interrupted for some time as a context switch.
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Fig. 5. Different Processor Utilizations

with a quad-core Intel Xeon processor and 8GB of memory.

For illustration purposes, we compared the protection strength

delivered by SPARTA with protection provided by EDF. We

define the robustness of a set of experiments as the average

achieved robustness over all secret keys, i.e.,

R =
1

n

n∑
i=1

1

|Mi|
∑

mj∈Mi

Rj , (6)

where n is the number of experiments, and Mi is the set of

messages in the i-th experiment. Rj is calculated according to

Eq. 2. The improvement achieved by SPARTA over EDF is

I =
1

n

n∑
i=1

1

|Mi|
∑

mj∈Mi

RSPARTA
j −REDF

j

REDF
j

. (7)

The two evaluation scenarios are presented as follows.

A. Different Processor Utilizations

In this set of experiments, we would like to study the influ-

ence of different processor utilizations on achieved protection

strength. We conducted experiments with different processor

utilization levels on the same problem size. That is, all

experiments are with 6 tasks. The studied processor utilization

levels are U ∈ {1, ..., 0.5, 0.4}, and on each level, 200 random

test applications were generated with different task periods

and execution times. The results are presented in Fig. 5. The

light gray and dark gray bars show the average robustness R
of EDF and SPARTA, respectively, with corresponding setups,

and are aligned to the primary y-axis. The red line indicates

the improvement I of each set of experiments, and is aligned

to the secondary y-axis on the right. We can observe that the

achieved improvements are gradually increasing as processor

utilization drops (indicated by the red line). We can also notice

that SPARTA dominates EDF on all utilization levels, and

it works better, when the processor is less loaded, due to

the larger amount of free time slacks that it can operate on.

Therefore, SPARTA has more flexibility in allocating leakage

points when U is low.

B. Different Problem Sizes

We now evaluate the performance of SPARTA on different

problem sizes, i.e., systems with different amount of tasks.

There are in total five sizes studied, namely, |T | ∈ {4, 6, ..., 12}.

On each size, we randomly generated 200 test applications

(having different task periods and execution times) with uti-

lization U = 0.7. The obtained results are shown in Fig. 6,

and the same representations are shared with the previous

subsection. From Fig. 6, we can find that SPARTA delivers

nearly a constant improvement level (indicated by the red line)

compared with EDF, and the absolute delivered protection is
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Fig. 6. Different Problem Sizes

higher on larger problem sizes. It is also worth mentioning

that, for individual cases, SPARTA delivered better protections

for the AES secret keys in all the instances of experiments,

and the average improvements is I = 441.

VII. CONCLUSIONS

In this paper, we presented the first real-time scheduling pol-

icy that thwarts DPA attacks. SPARTA can both guarantee the

deadline constraints, and, at the same time, provides extensive

enhancement to security of underlying AES implementations.

As demonstrated in the formal proofs, SPARTA shares the

same guarantee of system schedulability as the optimal EDF

policy. We have conducted experiments to evaluate the protec-

tion strength of SPARTA comparing with EDF under different

evaluation criteria.
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