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Abstract—Understanding the execution time is critical for
embedded, real-time applications. Worst-case execution time
(WCET) is an important metric to check the real-time con-
straints imposed on embedded applications. For complex ex-
ecution platforms, such as graphics processing units (GPUs),
analysis of WCET imposes great challenges due to the complex
characteristics of GPU architecture as well as GPU program
semantics. In this paper, we propose GDivAn, a measurement-
based WCET analysis tool for arbitrary GPU kernels. GDivAn
systematically combines the strength of symbolic execution (SE)
and genetic algorithm (GA) to maintain both the scalability
and the effectiveness of the analysis process. Our evaluation
with several open-source GPU kernels reveals the efficiency of
GDivAn.

Index Terms—GPU, symbolic execution, genetic algorithm,
testing

I. INTRODUCTION

General-purpose graphics processing units (GPGPU) have
been gaining attention due to their high computational capacity
and low power consumption. It is, therefore, natural to inves-
tigate the capability of GPGPUs in real-time applications [1],
[2]. This includes applications in avionics and automotive,
among others. To streamline the adoption of GPGPUs in real-
time processing, a major research thrust is to enable reasoning
over the timing behaviour of GPGPU applications.

The analysis of worst-case execution time (WCET) is cru-
cial to check whether a given real-time application meets the
deadline. WCET captures the maximum execution time for a
given program over all its inputs. For a given GPGPU program,
its WCET depends on the program and its features as well
as the GPU and its features. Therefore, in principle, it is
possible to determine the WCET for a given GPGPU program
running on a given GPU-based platform. In this paper, we
propose GDivAn, an approach to systematically generate test
inputs with the aim of exposing the WCET of an arbitrary
GPGPU program. GDivAn complements measurement-based
timing analysis methodologies, specifically, in terms of ob-
taining effective test inputs that are likely to lead to WCET
measurements.

The design and implementation of GDivAn involves sev-
eral technical challenges. Firstly, GPGPU programs employ
massive parallel processing. Hence, it is infeasible to generate
all possible execution scenarios in realistic GPGPU programs.
To this end, we first symbolically execute a GPGPU program

with a small number of threads. We employ such a strategy to
hypothesize that it is often possible to cover the GPGPU pro-
gram features (e.g. all possible branch outcomes) with a small
number of threads. Secondly, GPUs involve complex micro-
architectural features, involving shared memory, hundreds of
processing units and caches. Moreover, the exact nature of
these micro-architectural features (e.g. cache replacement pol-
icy and bus arbitration policy) remain opaque to developers.
This, in turn, makes the works on static WCET analysis [3],
[4], [5] practically infeasible for GPGPU programs. To solve
such challenges, we directly execute the generated test inputs
in commodity GPU-based systems. Thus, the key novelty in
our approach is to drive the generation of such test inputs
to expose the WCET. To this end, we leverage the results
obtained from symbolically executing a GPGPU program with
a small number of threads. Subsequently, we complement
these results via a genetic algorithm to systematically search
the input space and potentially converge towards the WCET.

How does GDivAn differ from the state-of-the-art? Existing
works in timing analysis of GPGPU applications [1], [6]
consider the system-level schedulability analysis assuming the
WCET of individual programs as given and ignoring how
it can be produced, whereas we focus on the structure of
individual GPGPU programs and produce their WCET. In the
past few years, there has been a rise on using extreme value
theory (EVT) for measurement-based timing analysis [7], [8],
[9]. However, there are strong requirements to be satisfied
for any result of an EVT-based approach to produce a sound
WCET [9]. Such is the collection of a representative input
sample that needs to satisfy key assumptions like indepen-
dence and identical distribution. While techniques have been
proposed to achieve some of these requirements, they need
deep interventions in the hardware/software architecture [9]
and are not applicable to processors of the complexity typical
to a GPU. In general, even in the case of less complex,
classical architectures there are several open challenges to be
solved before EVT-based techniques can be generally applied
and trusted [10], [11], [12]. In general, existing works on the
WCET analysis for GPUs [7], [8], [13] ignore the systematic
generation of test inputs for exposing the WCET. In addition,
hybrid WCET analysis [13] is not applicable for commodity
GPU-based systems. This is due to its implicit assumption



on the availability of GPU execution model. Finally, GDivAn
sets itself apart from existing works on combining symbolic
execution and genetic algorithm [14], by its novel mechanism
for testing the WCET of GPGPU programs.

After providing an overview in Section III, we make the
following contributions in the paper.

1) We propose GDivAn, a novel approach that employs a
synergistic combination of symbolic execution (SE) and
genetic algorithm (GA). This is to analyze the timing
properties of arbitrary GPGPU programs (Section IV).

2) We implement GDivAn for commodity GPU hardware
(i.e. NVIDIA Tegra K1 GPU). Such an implementation
can easily be integrated with any measurement-based
timing analysis for GPGPU programs.

3) We evaluate GDivAn for several GPU kernels involving
up to tens of thousands of threads (Section V). Our
evaluation reveals that GDivAn is significantly more
effective in exposing the WCET compared to both
random testing and genetic algorithm in isolation. Our
implementation and all experimental data are publicly
available.

II. SYSTEM AND EXECUTION MODEL

In this paper, we target GPU kernels written in CUDA [15] 1

and execution platforms similar to NVIDIA GPUs. However,
we believe that the core scientific capabilities within GDivAn
are also applicable to other GPU platforms. The smallest
execution unit in CUDA programs is a thread and the program
running on the GPU is called a kernel. Several threads can
be grouped into a thread block. GPUs use Streaming Mul-
tiprocessors (SMs) to execute the kernels assigned to them.
Each SM has its own memory subsystem. Such a memory
subsystem typically involves registers, scratchpad memories
and multiple levels of caches. All the SMs have access to the
global memory and all the threads within a thread block run
on the same SM. SMs leverage the single-instruction-multiple-
threads (SIMT) paradigm to employ large-scale parallelism. To
this end, threads in a thread block are grouped into warps. All
the threads within a warp execute instructions in lock-step.

Typically SMs in a GPU do not employ branch prediction.
If two threads of the same warp activate different targets of
a branch instruction, then a phenomenon, commonly known
as branch divergence, takes place. Branch divergence may
significantly affect the level of parallelism offered by GPUs.
For a typical ”if (C) then A else B” structure, branch
divergence leads to a serial executions of A and B. Threads that
do not activate the true leg of conditional C are disabled while
A is executed. Likewise, all threads satisfying the conditional
C are disabled while B is executed.

III. OVERVIEW

In this section, we discuss the challenges in estimating
WCET of GPU-based programs via simple examples. Sub-
sequently, we show the key insight behind our approach.

1GDivAn is equally applicable to other GPU programming paradigms like
OpenCL

Challenges in WCET analysis for GPU-based programs.
Consider the GPU kernels shown in Figure 1. For the sake
of simplicity in this example, we assume that any pair of
threads, executing the same instruction in the kernels, are free
from memory contention. In Figure 1(a), let us assume that
the multiplication instruction takes time t1 to execute. Hence,
for each thread, the worst-case execution time (WCET) is t1.
However, GPU kernels typically involve thousands of threads
running in parallel. If the kernel in Figure 1(a) is executed for
two threads, then it leads to four different execution scenarios
depending on the value of input. As shown in Figure 1(a),
the WCET (i.e. t1+t1) is manifested for path 3′ and path 4′.
This is due to the divergence that takes place at the branch
instruction.

From the discussion in the preceding paragraph, we may
hypothesize that branch divergence always leads to longer
execution time. The example in Figure 1(b) contradicts this
hypothesis. In Figure 1(b), the true leg of the branch involves
an atomic add operation, which, in turn might access the slow
global-memory. In contrast, the false leg of the branch in-
volves simple arithmetic manipulations on registers. Accessing
global-memory is several orders of magnitudes slower than
accessing register variables. Hence, in Figure 1(b), t2 � t3,
where t2 (t3) is the time to execute the true (false) leg of
the branch. If two threads execute the kernel in Figure 1(b),
then the WCET is t2 + t2, due to the atomic nature of
the operation which imposes serialization. We note that the
WCET is manifested for an execution scenario that does not
exhibit branch divergence. Intuitively, this occurs due to the
unbalanced execution time across different legs of the branch
instruction.

Will random testing work? In Figure 1, the number of execu-
tion scenarios grows exponentially with the number of threads.
In particular, consider to use random testing for exposing
WCETs of the examples in Figure 1. We observe that random
testing only has a slim chance (probability < 0.4% for two
threads) to synthesize input vectors equal to CONSTANT .
Since the WCET is manifested only for such input vectors, it
is unlikely that random testing will converge towards exposing
the WCET of programs in Figure 1.

Will symbolic execution work? Symbolic execution poses an
attractive choice to systematically explore all unique execution
paths in an application. It leverages the power of constraint
solvers to symbolically capture all inputs exhibiting an exe-
cution path. Then, such a symbolic formula is manipulated to
generate inputs for a different execution path. As a result, if our
example programs in Figure 1 are executed with two threads,
symbolic execution terminates generating four test inputs – one
each for a unique execution scenario. Thus, the probability to
expose WCET in our example program increases to 100% if
all four symbolically detected paths are executed.

Unfortunately, the complexity of symbolic execution
quickly becomes intractable with the growing number of
threads. As GPUs are targeted to support massive multi-
processing, typically GPGPU programs involve thousands of



 if (input[threadID] == CONSTANT){
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Fig. 1. Motivational example. thread 1 and thread 2 belong to the same warp. Both examples use one input and one output vector. Both vectors are stored
in GPU global-memory. The variable threadID captures the global identity of a thread within the execution. For each thread, variable blockID captures
the identity of the thread block. Threads in a warp belong to the same thread block.

threads. As a result, it is infeasible to explore all possible
execution paths (via symbolic execution) for any realistic
GPGPU applications.
Key insight. Our GDivAn approach proposes a novel mech-
anism to circumvent the inherent complexity of symbolic
execution, yet use its power to cover the structure of GPGPU
programs. Our key intuition is to run a GPU kernel symboli-
cally only for a limited number of threads and to cover all
(or most) execution paths of this kernel. Subsequently, we
investigate each path with respect to some program features
(e.g. number of instructions) that influence timing. Leveraging
an SMT solver, we generate test inputs for each path. Finally,
we systematically scale and manipulate these test inputs for
the original kernel that potentially runs with significantly larger
number of threads. The final stage involves a novel application
of genetic algorithm to manipulate the test inputs. In essence,
our GDivAn approach combines the strength of symbolic
execution to explore program structure and the strength of
genetic algorithm to systematically search a large input space.
How GDivAn works. Figure 2 provides an outline of
GDivAn. At a high level, the workflow of GDivAn involves
three steps: 1) generation of input atoms, 2) scaling of atoms,
and 3) exploration of input space via genetic algorithm.
1) Generation of input atoms: Consider the GPU kernel
shown in Figure 1(a). We use the predicate prede(th) to
symbolically capture the execution of control flow edge e in
thread th. Concretely, prede(th) is true if control flow edge e
is executed in thread th. Otherwise, prede(th) is set to false.
Let us assume that the true and false legs of the conditional in
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execution time
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execution tool

GPU
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threads

GPU kernel 
with N threads
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Algorithm
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GPU kernel
with X threads

Generator Block

Fig. 2. Overview of estimation tool

Figure 1(a) capture control flow edges e1 and e2, respectively.
In order to generate input atoms, we symbolically execute
a given GPU kernel with a small number of threads. For
instance, using two threads (say, thread 0 and thread 1), a
symbolic execution of the code in Figure 1(a) will result in
the following set of execution paths: (a) path1 : prede1(0) ∧
prede1(1), (b) path2 : prede2(0) ∧ prede2(1), (c) path3 :
prede1(0)∧prede2(1), and (d) path4 : prede2(0)∧prede1(1).
We note that path1...4 symbolically captures all inputs leading
to the respective execution paths. We leverage on constraint
solvers to generate input atoms from these symbolic formulas.
The primary goal of this step is to explore the GPU-kernel
structure for a small number of threads (i.e. two threads in



this example) and generate representative test inputs covering
the structure of the GPU-kernel. Our intuition is that it is often
feasible to cover the structure of GPU kernels (e.g. all branches
in the kernel) despite being executed with a small number of
threads.

2) Scaling input atoms: Input atoms, as discussed in the
preceding paragraphs, can be used to execute the given GPU
kernel with a small number of threads. To obtain an initial set
of test inputs for the original kernel, which typically executes
with thousands of threads, we systematically scale the input
atoms obtained via symbolic execution. Figure 3 outlines input
atoms generated from symbolically executing the code (also
shown in Figure 3) with two threads. Subsequently, these
input atoms were scaled, as shown on the top right corner
of Figure 3.

3) Exploration of input space via genetic algorithm: Steps
1) and 2) generate test inputs that reduce the search space.
However, the paths that heavily affect the execution times
through branch divergence, instruction serialization or cache
contention need to be detected from the large remaining search
space. We leverage genetic algorithm (GA) to systematically
explore this search space. To this end, we first run the given
GPU kernel with the set of scaled inputs (obtained from
the previous stage) and obtain the execution time for each
such input. Based on the execution times obtained, GA builds
new inputs via a series of selection, crossover and mutation
operation on the current set of test population and input atoms
obtained via the symbolic execution. Our objective in the GA
is to maximize the execution time of the GPU kernel. Figure 3
contains an example of two new input vectors. These input
vectors were created using two of the current input vectors and
input atoms, as shown in Figure 3. The process of executing
test inputs and generating new test population via GA is
repeated until the execution time does not show significant
variation across two consecutive generations of GA.

IV. DETAILED METHODOLOGIES

In this section, we describe the mechanism of different
building blocks in GDivAn. The overall outline of GDivAn
and the inter-dependencies between its building blocks appear
in Figure 2.

A. Generator block

The purpose of this block is to enable the creation of an
initial test population. To this end, we generate test inputs via
symbolic execution. The test inputs are generated to cover the
structure (e.g. the branches) of a GPU kernel. As discussed
in Section III, it is practically infeasible to employ symbolic
execution for realistic GPU kernels running a large number of
threads. Hence, we apply symbolic execution in a trimmed
down version of a given GPU kernel. Such a trimming is
employed by symbolically executing the GPU kernel only
with a small number of threads and aiming to obtain branch
coverage. We describe this in the following.

Trimmed symbolic execution: We note that it requires at
least two threads to manifest branch divergence in a GPU
kernel (see Figure 1). In Figure 1(a), we observed that the
presence of branch divergence may lead to longer execution
time. The primary intuition behind obtaining the branch cover-
age is to have representative inputs in the test population that
trigger branch divergence. To employ our trimmed version of
symbolic execution, we systematically increase the number of
threads (starting from two threads) in the GPU kernel and
invoke the symbolic execution engine. For each invocation of
the symbolic engine, we measure the branch coverage being
obtained. Finally, we stop the symbolic execution process once
both legs of all branch instructions are covered. However, for
complex GPU kernels, it might even be infeasible to obtain
100% branch coverage within a reasonable time. For such
cases, we impose a time bound (<1 hour) on the symbolic
runs of the kernel.

Let us assume that symbolic execution of the kernel was
performed for X number of GPU threads. Upon termination
of the symbolic execution, it generates the set of all execution
paths in the kernel trimmed down to X threads. For each
explored path π, we collect the following information:

Pπ(X ) ≡ 〈formπ, brdivπ, instrπ〉 (1)

formπ symbolically captures all inputs leading to the exe-
cution path π, brdivπ captures the total branch divergence
along the path π and instrπ is the total number of instructions
executed along π.

We compute brdivπ per barrier interval. A barrier interval
is the code between the start of the kernel and the first barrier
instruction or between two consecutive barrier instructions.
The end of a kernel serves as an implicit barrier. For each
execution path π explored via symbolic execution, the branch
divergence per barrier interval b is computed as follows:

brdivπ(b) =
divergent setsb

X − 1
× 100

Where divergent setsb is the number of different paths taken
by the X threads in the given barrier interval b. Finally, the
total branch divergence is computed by summing up the branch
divergence over all barrier intervals (|BI | captures the number
of barrier intervals):

brdivπ =

|BI |∑
b=1

brdivπ(b)

|BI |
Branch divergence and the number of instructions per exe-

cution path serve two crucial information for guiding the test
generation. In general, the genetic algorithm systematically
leverages the information on branch divergence and number of
instructions in order to generate test inputs maximizing kernel
execution time.

B. Scaling

In this stage, we scale the input atoms generated via sym-
bolic execution to fit the input size of the given GPU kernel.
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Fig. 3. Examples on scaling to large inputs and creating new inputs during the Genetic Algorithm stage

Assuming that the GPU kernel involves N GPU threads, recall
that we run the symbolic execution for X ≤ N threads. As
a by-product of symbolic execution, we obtain a set of paths
(captured by symbolic formulas) in the GPU kernel involving
X number of GPU threads. The key intuition of this scaling
process is that often the different paths in the given GPU
kernel (that involves N threads) can be generated via the
combinations of paths obtained from its trimmed version (that
involves X threads). For instance, consider our examples in
Figure 1. Assume pathin captures the i-th path in the kernel
involving n threads. The following relationships hold:

• path12 = path11 ‖ path11
• path22 = path21 ‖ path21
• path32 = path11 ‖ path21
• path42 = path21 ‖ path11

where ‖ captures an ordered (with respect to thread identities)
combination of different execution paths. Ideally N is divisible
by X so that no truncation is needed while scaling the input
atoms.

It is worthwhile to mention that branch conditionals tar-
geting thread ID (i.e. (threadID == CONSTANT )) or
positioning of the thread (i.e. (threadID == inputLength))
are special cases that cannot be handled via the scaling
process. For instance, when scaling from X threads to 2 ·X
threads, thread X will no longer be equal to the input length.
Hence, our trimmed version of symbolic execution will not
cover all branch legs for such conditional branches involving
input lengths or specific thread IDs. Hence, we complement

both the symbolic execution and the scaling process via a
genetic algorithm. This is to systematically explore the input
space for covering worst-case scenarios that were not obtained
after the scaling.

C. Genetic Algorithm

Our engineered algorithm involves a mapping between
terms used in genetic algorithm [16] (GA) literature and the
specific context of our targeted problem. Table I provides an
outline of this mapping and we use the terms used in Table I
for the rest of the discussion. Our GA process is outlined in
Figure 4.

WCET problem GA term

Path formula (i.e. formπ) Allele
Part of kernel input Gene

Kernel input Individual/Chromosome
Kernel execution time Fitness

TABLE I
MAPPING TO GENETIC ALGORITHM TERMS

An individual is mapped to an input for the kernel. If the
kernel runs for N threads and the trimmed symbolic execution
runs for X threads, then we encode the chromosome as a
combination of N

X genes. Figure 3 captures this phenomenon.
In particular, instead of N genes, we have N

2 genes to construct
Input 1 as follows:

Input 1 = Path 1‖Path 1‖Path 4‖Path 3‖ . . . ‖Path 3
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Fig. 4. Stages of the Genetic Algorithm

To maintain diversity in the initial test population, we
employ multiple strategies. Firstly, we create individuals by
combining a set of randomly selected paths. These paths
belong to the trimmed version of the kernel. Secondly, we
select individuals by combining paths that manifested max-
imum number of instructions and branch divergence in the
trimmed kernel. Recall that the information on the number
of executed instructions and branch divergence was collected
during symbolic execution (cf. Equation 1). As an example,
assume that the path “Path 2” exhibits the maximum number
of instructions and branch divergence. Therefore, we create
an individual as follows: Path 2‖Path 2‖ . . . ‖Path 2. The
individuals in the initial population, that are not suitable to
expose the WCET, are removed in subsequent iterations via
the natural selection of the genetic algorithm.

The elite selection stage selects a predefined percentage of
individuals from the population based on their fitness (i.e. the
kernel execution time). These individuals are kept unaltered
to use in the next population. During crossover, we select one
of the parents randomly and the other with a bias towards the
elite. Subsequently, an 1-point crossover is employed between
parents. An example of such an 1-point crossover can be
observed in Figure 3 (in the bottom half). A small fraction
of individuals are mutated at every iteration of the genetic
algorithm. To this end, we implement a low-cost mutation
operation. Concretely, we generate two random numbers – the
first number to check if we hit the probability to mutate and
the other (in case we mutate) to identify the specific gene to
mutate.

The iterative process of GA continues until the kernel
execution times, manifested by two consecutive generations
of GA, do not change substantially. The process is also
terminated if the time budget of testing is reached.

D. Why GDivAn works?

The reason GDivAn works is because of the synergistic
combination of symbolic execution (SE) and genetic algorithm
(GA). The purpose of our symbolic execution step is not
to explore all different aspects in the GPGPU program that
may impact the program performance. Due to the complexity
of symbolic execution, such a strategy is unlikely to scale.
Besides, symbolic executors are classically not designed to
explore the performance behaviour of GPGPU programs. As
a result, integrating GPU-specific performance features into a
symbolic executor would require heavy engineering of state-

of-the-art symbolic execution tools. To address such chal-
lenges, we propose to use off-the-shelf symbolic executors and
explore the structure of GPGPU programs considering branch
divergence. This leads to an initial population of test cases for
our genetic algorithm. Our genetic algorithm, then, searches
the input space and discovers inputs that lead to slower
execution times due to other micro-architectural features (e.g.
memory coalescing, memory-bank conflicts and cache misses).
This makes GDivAn a scalable and effective tool to discover
the likely WCET of arbitrary GPGPU programs.

V. EVALUATION

Experimental setup. We use GKLEE [17] as the symbolic
execution tool for GDivAn. GKLEE is a symbolic analyzer
and test generator tool tailored for CUDA C++ programs.
We modify the source code of GKLEE to obtain the relevant
information (e.g. branch divergence, number of instructions)
for each explored path and drive the genetic algorithm stage
within GDivAn.

Program #Kernels LOC #Kernel #if # loops #threads
name invocations stmts.

LBM 1 97 1 13 0 32768
BFS 2 17 >1 2 1 1024

11 >1 1 0 1024
NSICHNEU 1 2346 1 252 0 4096

TABLE II
KERNEL PROPERTIES

We have picked three kernels for evaluating GDivAn.
Specifically, we have chosen kernels involving multiple pro-
grams paths to stress test the mechanism implemented within
GDivAn. Table II captures some salient properties of the cho-
sen subject programs. NSICHNEU is a single-threaded CPU
program obtained from Mälardalen WCET benchmarks [18].
NSICHNEU exhibits complex control flow and implements the
simulation of a Petri net. We have modified it to a multi-
threaded CUDA program, where each thread of the GPU
runs the simulation of a Petri net. LBM is a GPU program
for computational fluid dynamics using Lattice Boltzmann
Models. BFS is the GPU implementation of breadth-first
search and it is obtained from the Rodinia 3.1 benchmark
suite [19].

All the kernels have been evaluated on an NVIDIA Tegra
K1 GPU. The kernels were compiled with CUDA nvcc version
6.5. For measuring the execution time on the Tegra K1, the
default frequencies have been used, i.e., 72 MHz for the GPU’s
core clock and 204 MHz for the GPU’s memory clock. Each
generated test was executed ten times in the GPU and the
average of these ten runs are reported in the evaluation.

Evaluating the hypothesis of GDivAn. To evaluate the key
hypothesis of GDivAn, we have implemented a synthetic
kernel as shown in Listing 1 to run with 215 threads. This
kernel is similar to the example in Figure 1(b) where branch
divergence does not lead to the WCET of the kernel. In this
section, we will refer to this kernel as Artificial.
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Fig. 5. WCET of kernels via Random, Random+GA, and GDivAn

g l o b a l void k e r n e l ( i n t ∗ v a l u e s , i n t ∗ r e s u l t ) {

i n t t i d = b l o c k I d x . x ∗ blockDim . x + t h r e a d I d x . x ;

i f ( v a l u e s [ t i d ] == CONSTANT) {
atomicAdd(& r e s u l t [ b l o c k I d x . x ] , v a l u e s [ t i d ] ) ;
. . .
a tomicAdd(& r e s u l t [ b l o c k I d x . x ] , v a l u e s [ t i d ] ) ;

} e l s e {
atomicAdd(& r e s u l t [ t i d ] , 10) ;

}

}

Listing 1. An example to test the hypothesis of GDivAn

Symbolic execution stage. Table III captures the maximum
number of threads GKLEE can run within an hour, the branch
coverage obtained and the total time taken to symbolically
execute the respective programs. Recall (see Section IV-A)
that our goal is to achieve a branch coverage as close as
possible to 100%. For Artificial this has been achieved
with two threads and the execution time is 1 second. For the
other benchmarks, the branch coverage and execution time is
indicated with the maximum number of threads that could be
analyzed in less than an hour. We have to mention here that
the number of threads to be considered is different for each
benchmark. LBM, for example, works on square matrices and

each element is assigned to one thread. Thus, the next level
after four threads would be nine which, however, lead to an
analysis time beyond one hour. Similar considerations apply
to BFS and NSICHNEU.

Recall that we use the paths explored by GKLEE to create
individuals for the genetic algorithm (Section IV-B).

Program # threads branch coverage (%) execution time (secs)
Artificial 2 100 1

LBM 4 80 10
BFS 2 83.33 1

NSICHNEU 2 70.24 341

TABLE III
EVALUATION OF GKLEE RUNS WITH OUR SUBJECT PROGRAMS

Genetic algorithm stage. We select a population size of 100
(i.e. number of inputs in one generation) to run our genetic
algorithm. Moreover, we keep the elite percentage 10% (cf.
Section IV-C) and the probability to mutate a gene (for a
given individual) to be 25%. It is worthwhile to note that we
mutate only one gene of an individual, thus keeping the overall
mutation rate (across all genes of the individuals) quite low.
Finally, while creating the initial population of individuals,
we reserve 30% population for individuals with special traits.



GDivAn random+ga random
Program name WCET WCET reached after WCET WCET reached after WCET WCET reached after

(ms) (s) (ms) (s) (ms) (s)
Artificial 6.454 459 0.44 258 0.369 1

LBM 171.631 12028 169.661 1514 169.777 7255
BFS 52.482 1411 33.03 911 32 1128

NSICHNEU 119.412 12669 5.419 13333 5.381 2702

TABLE IV
TESTING TIME. ALL EXPERIMENTS WERE PERFORMED ON AN INTEL I5 MACHINE HAVING 16GB RAM AND RUNNING UBUNTU 16.04

These special individuals were created from paths that exhib-
ited maximum number of instructions and branch divergence
during the symbolic execution. The parameters of the GA has
been set after a preliminary set of extensive experiments.

Overall evaluation. Figure 5 outlines the overall evaluation
of GDivAn. To stress test our approach, we compare GDivAn
with both random testing (“random” in Figure 5) and our
genetic algorithm without the symbolic execution step (“ran-
dom+ga” in Figure 5). For “random+ga” approach, we created
the initial population of genetic algorithm randomly. For a fair
comparison, the number of test runs across all approaches is
kept the same. Figure 5 clearly shows that GDivAn approach
outperforms the rest in terms of exposing the kernel WCET.

Table IV captures the WCET detected with the three
approaches. The quality of WCETs obtained via GDivAn
is significantly higher than that produced via “random” and
“random+ga”. Table IV also highlights the time consumed
for each approach until it reached the WCET it was able to
produce (after that time no improvements on the measured
WCET were observed). The analysis time reported in Table IV
is the sum of the GA steps, the time for data allocation and
copying on the GPU, and the kernel execution time. The kernel
execution time takes from around 10% (for NSICHNEU) to
around 33% (for BFS) of the total analysis time, until GDivAn
reports the WCET of the respective programs. Note that this
kernel execution time already accounts running the respective
kernel ten times for each input. For GDivAn, the indicated
time also includes the duration of the symbolic execution (see
Table III).

VI. DISCUSSION

In this paper, we propose GDivAn, a novel approach to test
the worst-case execution time (WCET) of arbitrary GPGPU
programs. GDivAn systematically combines the strength of
symbolic execution and genetic algorithm to converge towards
the WCET. We evaluate GDivAn with several GPU kernels
and show its effectiveness compared to both random testing
and genetic algorithm in their pure forms. In the future, we
would like to investigate the capability of GDivAn to compute
the response time of arbitrary GPU-based applications repre-
sented as task graphs. We also plan to use GDivAn for driving
worst-case oriented optimizations of GPU kernels. To facili-
tate reproducibility and further research on the subject, our
implementation and experimental data are publicly available
here: https://bitbucket.org/AdrianHorga/gdivan
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[9] F. J. Cazorla, E. Quiñones, T. Vardanega, L. Cucu, B. Triquet, G. Bernat,
E. Berger, J. Abella, F. Wartel, M. Houston et al., “Proartis: Probabilis-
tically analyzable real-time systems,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 12, no. 2s, p. 94, 2013.

[10] S. J. Gil, I. Bate, G. Lima, L. Santinelli, A. Gogonel, and L. Cucu-
Grosjean, “Open challenges for probabilistic measurement-based worst-
case execution time,” IEEE Embedded Systems Letters, vol. 9, no. 3, pp.
69–72, 2017.

[11] L. Santinelli, J. Morio, G. Dufour, and D. Jacquemart, “On the sustain-
ability of the extreme value theory for WCET estimation,” in OASIcs-
OpenAccess Series in Informatics, vol. 39. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2014.

[12] G. Lima, D. Dias, and E. Barros, “Extreme value theory for estimating
task execution time bounds: A careful look,” in ECRTS, 2016, pp. 200–
211.

[13] A. Betts and A. Donaldson, “Estimating the WCET of GPU-accelerated
applications using hybrid analysis,” in Real-Time Systems (ECRTS), 2013
25th Euromicro Conference on. IEEE, 2013, pp. 193–202.

[14] A. I. Baars, M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn, P. Tonella,
and T. E. J. Vos, “Symbolic search-based testing,” in ASE, 2011, pp. 53–
62.

[15] “CUDA toolkit documentation,” 2017. [Online]. Available: http:
//docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

[16] E.-G. Talbi, Metaheuristics: from design to implementation. John Wiley
& Sons, 2009, vol. 74.

[17] G. Li, P. Li, G. Sawaya, G. Gopalakrishnan, I. Ghosh, and S. P.
Rajan, “GKLEE: concolic verification and test generation for GPUs,”
in PPOPP, 2012, pp. 215–224.

[18] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The Mälardalen
WCET benchmarks – past, present and future,” in WCET, 2010, pp.
137–147.

[19] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in IISWC, 2009, pp. 44–54.

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

	Introduction
	System and Execution Model
	Overview
	Detailed Methodologies
	Generator block
	Scaling
	Genetic Algorithm
	Why GDivAn works?

	Evaluation
	Discussion
	References

